A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of ICH-Q3D Elemental Impurity Leachables in Glass Vials by Inductively Coupled Plasma Mass Spectrometry. | LitMetric

Container closure systems that are used for packaging pharmaceutical products are required to satisfy numerous safety requirements. Maximum permitted limits on the concentrations of numerous toxic elemental impurities that potentially leach from the packaging are one such requirement. The implementation of ICH-Q3D Guideline for Elemental Impurities, in conjunction with the 2018 publication of USP <232> Elemental Impurities-Limits and USP <233> Elemental Impurities-Procedures, requires a critical risk assessment of all container closure systems to evaluate their contribution of certain elemental impurities to the enclosed drug product. ICH-Q3D has established limits for each specific elemental impurity that considers relevant toxicological data and administration route (oral, parenteral, or inhalation) and presents them as permitted daily exposures based on the maximum daily dosage of the final drug product. A study was undertaken to assess the degree of elemental impurity leaching from one type of pharmaceutical glass vial under specific, fixed environmental controls. Multiple buffer systems representing a broad spectrum of possible parenteral drug product formulations were used in the study. Resulting buffer solutions that had been in contact with a single type of glass vial under specific conditions were subsequently analyzed using an inductively coupled plasma mass spectrometry (ICP-MS) method developed and validated specifically for the purpose of quantifying elemental impurity leachables in a variety of parenteral formulations. Results indicated that the degree of elemental impurity leachables imparted by the specific type of glass vial evaluated during this study posed no risk to patient safety, regardless of the drug product buffer formulation. Following this evaluation, the ICP-MS method developed for the determination of elemental impurities leachables has been successfully applied to the assessment of elemental impurities in a number of different biological parenteral drug product formulations currently under development. These data can be leveraged for inclusion in elemental impurities component ICH-Q3D risk assessments to satisfy the container closure system contribution.

Download full-text PDF

Source
http://dx.doi.org/10.5731/pdajpst.2021.012655DOI Listing

Publication Analysis

Top Keywords

elemental impurities
24
elemental impurity
20
drug product
20
elemental
13
impurity leachables
12
container closure
12
glass vial
12
inductively coupled
8
coupled plasma
8
plasma mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!