Chirality is a fundamental feature in all domains of nature, ranging from particle physics over electromagnetism to chemistry and biology. Chiral objects lack a mirror plane and inversion symmetry and therefore cannot be spatially aligned with their mirrored counterpart, their enantiomer. Both natural molecules and artificial chiral nanostructures can be characterized by their light-matter interaction, which is reflected in circular dichroism (CD). Using DNA origami, we assemble model meta-molecules from multiple plasmonic nanoparticles, representing meta-atoms accurately positioned in space. This allows us to reconstruct piece by piece the impact of varying macromolecular geometries on their surrounding optical near fields. Next to the emergence of CD signatures in the instance that we architect a third dimension, we design and implement sign-flipping signals through addition or removal of single particles in the artificial molecules. Our data and theoretical modeling reveal the hitherto unrecognized phenomenon of chiral plasmonic-dielectric coupling, explaining the intricate electromagnetic interactions within hybrid DNA-based plasmonic nanostructures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620978 | PMC |
http://dx.doi.org/10.1021/acsnano.2c04729 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.
Cell Rep
October 2024
Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France. Electronic address:
J Am Soc Mass Spectrom
October 2024
Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
Lipid mediators, which include specialized pro-resolving mediators and classic eicosanoids, are pivotal in both initiating and resolving inflammation. The regulation of these molecules determines whether inflammation resolves naturally or persists. However, our understanding of how these mediators are regulated over time in various inflammatory contexts is limited.
View Article and Find Full Text PDFChempluschem
December 2024
Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy.
Developing chemiresistive devices for the wireless detection of complex analytes has gained considerable interest. In particular, the enantioselective recognition of chiral molecules is still a challenge. Here, we design a hybrid chemiresistive device for the wireless enantioselective discrimination of chiral analytes by combining the enantiorecognition capabilities of an inherently chiral oligomer, that is, oligo-(3,3'-dibenzothiophene) (BTT) and the insulating/conducting transition of polypyrrole (Ppy).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!