Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cyanobacterial blooms negatively affect aquatic ecosystems and human health. Algicidal bacteria can efficiently kill bloom-causing cyanobacteria. Bacillus altitudinis G3 isolated from Dianchi Lake shows high algicidal activity against Microcystis aeruginosa. In this study, we investigated its algicidal characteristics including attack mode, photosynthesis responses, and source and the contribution of reactive oxygen species (ROS). The results showed that G3 efficiently and specifically killed M. aeruginosa mainly by releasing both thermolabile and thermostable algicidal substances, which exhibited the highest algicidal activity (99.8%, 72 h) in bacterial mid-logarithmic growth phase. The algicidal ratio under full-light conditions (99.5%, 60 h) was significantly higher than under dark conditions (<20%, P < 0.001). G3 filtrate caused photosystem dysfunction by decreasing photosynthetic efficiency, as indicated by significantly decreased F/F and PI (P < 0.001) values. It also inhibited photosynthetic electron transfer as indicated by significantly decreased rETR (P < 0.001), especially Q downstream, as revealed by significantly decreased φE and ψ, and increased M (P < 0.001). These results indicated that the algicidal activity of G3 filtrate is light-dependent, and the cyanobacterial photosystem is an important target. Cyanobacterial ROS and malondialdehyde contents greatly increased by 37.1% and 208% at 36 h, respectively. ROS levels decreased by 49.2% (9 h) when diuron (3-(3-4-dichlorophenyl)-1,1-dimethylurea) partially blocked photosynthetic electron transport from Q to Q. Therefore, excessive ROS were produced from disrupted photosynthesis, especially the inhibited electron transport area in Q downstream, and caused severe lipid peroxidation with significantly increased MDA content and oxidative stress in cyanobacteria. The ROS scavenger N-acetyl-l-cysteine significantly decreased both cyanobacterial ROS levels (34%) and algicidal ratio (52%, P < 0.05) at 39 h. Thus, excessive ROS production due to G3 filtrate administration significantly contributed to its algicidal effect. G3 could be an excellent algicide to control M. aeruginosa blooms in waters under suitable light conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136767 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!