PSMD14/POH1/Rpn11 plays a crucial role in cellular homeostasis. PSMD14 is a structural subunit of the lid subcomplex of the proteasome 19S regulatory particle with constitutive deubiquitinase activity. Canonically, PSMD14 removes the full ubiquitin chains with K48-linkages by hydrolyzing the isopeptide bond between the substrate and the C-terminus of the first ubiquitin, a crucial step for the entry of substrates into the catalytic barrel of the 20S proteasome and their subsequent degradation, all in context of the 26S proteasome. However, more recent discoveries indicate PSMD14 DUB activity is not only coupled to the translocation of substrates into the core of 20S proteasome. During the assembly of the lid, activity of PSMD14 has been detected in the context of the heterodimer with PSMD7. Additionally, assembly of the lid subcomplex occurs as an independent event of the base subcomplex and 20S proteasome. This feature opens the possibility that the regulatory particle, free lid subcomplex or the heterodimer PSMD14-PSMD7 might play other physiological roles including a positive function on protein stability through deubiquitination. Here we discuss scenarios that could enhance this PSMD14 non-canonical pathway, the potential impact in preventing degradation of substrates by autophagy highlighting the main findings that support this hypothesis. Finally, we discuss why this information should be investigated in biomedicine specifically with focus on cancer progression to design new therapeutic strategies against the lid subcomplex and the heterodimer PSMD14-PSMD7, highlighting PSMD14 as a druggable target for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2022.110490 | DOI Listing |
bioRxiv
January 2025
Whitehead Institute for Biomedical Research, Cambridge, MA 02142.
To direct regulated protein degradation, the 26S proteasome recognizes ubiquitinated substrates through its 19S particle and then degrades them in the 20S enzymatic core. Despite this close interdependency between proteasome subunits, we demonstrate that knockouts from different proteasome subcomplexes result in distinct highly cellular phenotypes. In particular, depletion of 19S PSMD lid proteins, but not that of other proteasome subunits, prevents bipolar spindle assembly during mitosis, resulting in a mitotic arrest.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
The 26S proteasome complex is the hub for regulated protein degradation in the cell. It is composed of two biochemically distinct complexes: the 20S core particle with proteolytic active sites in an internal chamber and the 19S regulatory particle, consisting of a lid and base subcomplex. The base contains ubiquitin receptors and an AAA+ (ATPases associated with various cellular activities) motor that unfolds substrates prior to degradation.
View Article and Find Full Text PDFCell Signal
January 2023
Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile; Centro de Investigación en Autofagia, Santiago, Chile; Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile; Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile. Electronic address:
PSMD14/POH1/Rpn11 plays a crucial role in cellular homeostasis. PSMD14 is a structural subunit of the lid subcomplex of the proteasome 19S regulatory particle with constitutive deubiquitinase activity. Canonically, PSMD14 removes the full ubiquitin chains with K48-linkages by hydrolyzing the isopeptide bond between the substrate and the C-terminus of the first ubiquitin, a crucial step for the entry of substrates into the catalytic barrel of the 20S proteasome and their subsequent degradation, all in context of the 26S proteasome.
View Article and Find Full Text PDFPLoS One
September 2022
Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America.
The HEAT domains are a family of helical hairpin repeat domains, composed of four or more hairpins. HEAT is derived from the names of four family members: huntingtin, eukaryotic translation elongation factor 3 (eEF3), protein phosphatase 2 regulatory A subunit (PP2A), and mechanistic target of rapamycin (mTOR). HEAT domain-containing proteins play roles in a wide range of cellular processes, such as protein synthesis, nuclear transport and metabolism, and cell signaling.
View Article and Find Full Text PDFElife
November 2019
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
The 26S proteasome is essential for proteostasis and the regulation of vital processes through ATP-dependent degradation of ubiquitinated substrates. To accomplish the multi-step degradation process, the proteasome's regulatory particle, consisting of lid and base subcomplexes, undergoes major conformational changes whose origin is unknown. Investigating the proteasome, we found that peripheral interactions between the lid subunit Rpn5 and the base AAA+ ATPase ring are important for stabilizing the substrate-engagement-competent state and coordinating the conformational switch to processing states upon substrate engagement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!