Exposure to arsenic through private drinking water wells causes serious human health risks throughout the globe. Water testing data indicates there is arsenic contamination in private drinking water wells across New Jersey. To reduce the adverse health risk due to exposure to arsenic in drinking water, it is necessary to identify arsenic sources affecting private wells. Private wells are not regulated by any federal or state agencies through the Safe Drinking Water Act and therefore information is often lacking. To this end, we have developed machine learning algorithms including Random Forest Classification and Regression to decipher the factors contributing to higher arsenic concentration in private drinking water wells in west-central New Jersey. Arsenic concentration in private drinking water wells served as a response variable while explanatory variables were geological bedrock type, soil type, drainage class, land use/cover, and presence of orchards, contaminated sites, and abandoned mines within the 152.4-meter (500 ft) radius of each well. Random Forest Classification and Regression achieved 66 % and 55 % prediction accuracies for arsenic concentration in private drinking water wells, respectively. Overall, both models identify that bedrock, soil, land use/cover, and drainage type (in descending order) are the most important variables contributing to higher arsenic concentration in well water. These models further identify bedrock subgroups at a finer scale including Passaic Formation, Lockatong Formation, Stockton Formation contributing significantly to arsenic concentration in well water. Identification of sources of arsenic contamination in private drinking water wells at such a fine scale facilitates development of more targeted outreach as well as mitigation strategies to improve water quality and safeguard human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.159360DOI Listing

Publication Analysis

Top Keywords

drinking water
32
private drinking
24
water wells
24
arsenic concentration
20
water
13
well water
12
random forest
12
forest classification
12
classification regression
12
concentration private
12

Similar Publications

The present study evaluated the performance of a full-scale gravity-driven membrane filtration system with passive hydraulic fouling control (PGDMF) for drinking water treatment in a small community over a 3-year period. The PGDMF system consistently met the design flow and regulated water quality/performance parameters (i.e.

View Article and Find Full Text PDF

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of an essential oil from the aerial parts of  ×  L. (peppermint oil) when used as a sensory additive in feed and in water for drinking for all animal species. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that that peppermint oil is safe for all animal species at the maximum use level of 12 mg/kg complete feed.

View Article and Find Full Text PDF

Fungal contamination in drinking water has garnered considerable attention over the past few decades, especially considering the detrimental consequences of pathogenic fungal species on both human and animal health. The formation of biofilms by certain species is a considerable factor contributing to the emergence of severe fungal infections. This research was designed to isolate and identify fungi, particularly those capable of forming biofilms from 150 samples of drinking water sourced from various locations.

View Article and Find Full Text PDF

Objective: To evaluate the drinking water quality in cities and towns in Xinjiang.

Methods: The testing data of 6543 water samples from the dry season and the wet season in 2023 were selected, and the drinking water quality in Xinjiang was evaluated and analyzed by using the Nemerow pollution index, the worst factor discriminant method and the weighted average method to calculate the comprehensive water quality index.

Results: The comprehensive index of drinking water quality in Xinjiang was 0.

View Article and Find Full Text PDF

This study determined the concentrations and seasonal variations of phthalate esters (PAEs) in water and sediment samples of the receiving stream within the vicinity of the Obafemi Awolowo University, Ile-Ife dumpsite. The objective of this study was to evaluate the pollution status of the study area by determining the levels of PAEs in water and sediment samples. This assessment aimed to understand the presence and extent of phthalate ester pollution in the study area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!