Uncovering mechanisms underlying fetal programming during pregnancy is of critical importance. Atypical neurodevelopment during the pre- and immediate postnatal period has been associated with long-term adverse health outcomes, including mood disorders and aberrant cognitive ability in offspring. Maternal factors that have been implicated in anomalous offspring development include maternal inflammation and tress, anxiety, and depression. One potential mechanism through which these factors perturb normal offspring postnatal development is through microbiome disruption. The mother is a primary source of early postnatal microbiome seeding for the offspring, and the transference of a healthy microbiome is key in normal neurodevelopment. Since psychological stress, mood disorders, and inflammation have all been implicated in altering maternal microbiome community structure, passing on aberrant microbial communities to the offspring that may then affect developmental outcomes. Therefore, we examined how maternal stress, anxiety and depression assessed with standardized instruments, and maternal inflammatory cytokine levels in the pre- and postnatal period are associated with the offspring microbiome within the first 13 months of life, utilizing full length 16S sequencing on infant stool samples, that allowed for species-level resolution. Results revealed that infants of mothers who reported higher anxiety and perceived stress had reduced alpha diversity. Additionally, the relative taxonomic quantitative abundances of Bifidobacterium dentium and other species that have been associated with either modulation of the gut-brain axis, or other beneficial health outcomes, were reduced in the offspring of mothers with higher anxiety, perceived stress, and depression. We also found associations between bifidobacteria and prenatal maternal pro-inflammatory cytokines IL-6, IL-8, and IL-10. In summary, specific microbial taxa involved in maintaining proper brain and immune function are lower in offspring born to mothers with anxiety, depression, or stress, providing strong evidence for a mechanism by which maternal factors may affect offspring health through microbiota dysregulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2022.10.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!