Objective: Nucleolar proteins have important functions in the regulation of cell homeostasis and play a crucial role in sensing various types of stress, such as genotoxic stress. Propolis has epithelial, analgesic, antibacterial, antifungal and antiviral effects. This study aimed to evaluate the gene expression levels of nucleolar proteins: nucleolin (NCL); nucleophosmin (NPM1); and upstream binding transcription factor (UBTF), as well as the benefits of propolis in wound healing.

Method: This experimental study was conducted by creating clean and clean-contaminated wounds according to the Surgical Site Infection Guidelines, 2016. A total of seven animal groups were included in the study: control; laparotomy; anastomosis; fucidic acid with/without anastomosis; propolis with/without anastomosis Results: Statistically significant differences of levels of gene expression among the groups were detected for NCL (p=0.004), NPM1 (p=0.011) and UBTF (p=0.000). When the expression levels of the related genes and blood parameters are considered, the relationship between NCL, NPM1 and UBTF expression levels and blood parameters (NE, EO, NE(%), LY, LY(%), EO, EO(%), MO, MO(%), RBC, HB, HCT, MCV, MCHC, RDW, RDW(%), PLT, PDW and PCT) were statistically significant.

Conclusion: The nucleolar proteins such as NCL, NPM1 and UBTF have important functions in cell viability and its maintenance under various condition such as stress and injury. Additionally, propolis has positive benefits in wound healing and in the prevention of wound infection. Our findings provide the first insights into the putative role of those proteins in wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.12968/jowc.2022.31.Sup10.S28DOI Listing

Publication Analysis

Top Keywords

nucleolar proteins
12
expression levels
12
upstream binding
8
binding transcription
8
transcription factor
8
propolis wound
8
gene expression
8
with/without anastomosis
8
blood parameters
8
ncl npm1
8

Similar Publications

Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.

Cell Mol Neurobiol

January 2025

Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.

Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.

View Article and Find Full Text PDF

Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.

View Article and Find Full Text PDF

Discovery of DCAF16 Binders for Targeted Protein Degradation.

ACS Chem Biol

January 2025

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.

Conventional small-molecule drugs primarily operate by inhibiting protein function, but this approach is limited when proteins lack well-defined ligand-binding pockets. Targeted protein degradation (TPD) offers an alternative approach by harnessing cellular degradation pathways to eliminate specific proteins. Recent studies have expanded the potential of TPD by identifying additional E3 ligases, with DCAF16 emerging as a promising candidate for facilitating protein degradation through both proteolysis-targeting chimera (PROTAC) and molecular glue mechanisms.

View Article and Find Full Text PDF

Harnessing viral internal proteins to combat flu and beyond.

Virology

January 2025

School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom. Electronic address:

This mini-review examines the strategy of combining viral protein sequence conservation with drug-binding potential to identify novel antiviral targets, focusing on internal proteins of influenza A and other RNA viruses. The importance of combating viral genetic variability and reducing the likelihood of resistance development is emphasised in the context of sequence redundancy in viral datasets. It covers recent structural and functional updates, as well as drug targeting efforts for three internal influenza A viral proteins: Basic Polymerase 2, Nuclear Export Protein, and Nucleoprotein.

View Article and Find Full Text PDF

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!