HDR brachytherapy combines steep dose gradients in space and time, thereby requiring detectors of high spatial and temporal resolution to perform accurate treatment monitoring. We demonstrate a miniaturized fiber-integrated scintillator detector (MSD) of unmatched compactness which fulfills these conditions.The MSD consists of a 0.28 mm large and 0.43 mm long detection cell (GdOS:Tb) coupled to a 110 micron outer diameter silica optical fiber. The fiber probe is tested in a phantom using a MicroSelectron 9.1 Ci Ir-192 HDR afterloader. The detection signal is acquired at a rate of 0.08 s with a standard sCMOS camera coupled to a chromatic filter (to cancel spurious Cerenkov signal). The dwell position and time monitoring are analyzed over prostate treatment sequences with dwell times spanning from 0.1 to 11 s. The dose rate at the probe position is both evaluated from a direct measurement and by reconstruction from the measured dwell position using the AAPM TG-43 formalism.A total number of 1384 dwell positions are analyzed. In average, the measured dwell positions differ by 0.023 ± 0.077 mm from planned values over a 6-54 mm source-probe distance range. The standard deviation of the measured dwell positions is below 0.8 mm. 94% of the 966 dwell positions occurring at a source-probe inter-catheter spacing below 20 mm are successfully identified, with a 100% detection rate for dwell times exceeding 0.5 s. The average deviation to the planned dwell times is of 0.005 ± 0.060 s. The instant dose retrieval from dwell position monitoring leads to a relative mismatch to planned values of 0.14% ± 0.7%.A miniaturized Gd2OS:Tb detector coupled to a standard sCMOS camera can be used for time-resolved treatment monitoring in HDR Brachytherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ac9a9bDOI Listing

Publication Analysis

Top Keywords

dwell positions
16
treatment monitoring
12
dwell position
12
dwell times
12
measured dwell
12
dwell
10
scintillator detector
8
time-resolved treatment
8
hdr brachytherapy
8
standard scmos
8

Similar Publications

Purpose: The present study evaluated the dosimetric impact and compared the dose variations between the advanced collapsed cone engine (Task Group 186) and Task Group 43 plans for cervical cancer using tandem and ovoid applicators.

Material And Methods: Thirty cervical cancer patients underwent iridium-192 (Ir) high-dose-rate (HDR) intra-cavitary brachytherapy using tandem and ovoid applicator. Original treatment plans for all patients were created using TG-43 dose calculation formalism.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to identify errors in transrectal ultrasound (TRUS)-based reconstructions for high-dose-rate brachytherapy in prostate cancer, using an electromagnetic tracking (EMT) system to enhance accuracy during treatment.
  • - Out of 265 evaluated needle reconstructions, 23% had minor errors or worse, with 9% classified as major or severe, primarily due to issues like incorrect needle placement and user errors.
  • - The findings indicate that one-quarter of the reconstructions had errors exceeding 2mm, highlighting the potential of EMT to help detect and prevent these mistakes, improving patient care without affecting the clinical process.
View Article and Find Full Text PDF

Contrast-enhanced CT is the standard imaging technique in oncological objectives. Rates of missed pathologies depend on work experience of the respective radiologists. Thus the aim of this study is to analyze the eye movements of professionals while reading CT images in order to evaluate whether the eye-fixation patterns and search strategies of experienced radiologists could explain higher detection rates of pathologies and whether such patterns can be learned.

View Article and Find Full Text PDF

Nucleosome flipping drives kinetic proofreading and processivity by SWR1.

Nature

December 2024

Single Molecule Biophysics Group, MRC Laboratory of Medical Sciences, London, UK.

The yeast SWR1 complex catalyses the exchange of histone H2A-H2B dimers in nucleosomes, with Htz1-H2B dimers. Here we used single-molecule analysis to demonstrate two-step double exchange of the two H2A-H2B dimers in a canonical yeast nucleosome with Htz1-H2B dimers, and showed that double exchange can be processive without release of the nucleosome from the SWR1 complex. Further analysis showed that bound nucleosomes flip between two states, with each presenting a different face, and hence histone dimer, to SWR1.

View Article and Find Full Text PDF

Background: Comprehensive quality assurance (QA) for a seamless workflow of high-dose-rate brachytherapy, from imaging to planning and irradiation, is uncommon, and QA of the source dwell position is performed in one- or two-dimensions. Gel dosimetry using magnetic resonance imaging (MRI) is effective in verifying the three-dimensional distribution of doses for image-guided brachytherapy (IGBT). However, MRI scanners are not readily accessible, and MRI scanning is time-consuming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!