Efficient bioremediation of laboratory wastewater co-contaminated with PAHs and dimethylformamide by a methylotrophic enrichment culture.

J Environ Manage

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia. Electronic address:

Published: January 2023

A methylotrophic enrichment culture, MM34X, has been assessed for its exceptional ability in biodegradation of dimethylformamide (DMF) and bioremediation of laboratory wastewater (LWW) co-contaminated with polycyclic aromatic hydrocarbons (PAHs). The culture MM34X tolerated high concentrations of DMF and efficiently degraded 98% of 20,000 mg L DMF within 120 h. LWW bioremediation was performed in stirred bottle laboratory-scale bioreactor. After 35 days of incubation, 2760.8 ± 21.1 mg L DMF, 131.8 ± 9.7 mg L phenanthrene, 177.3 ± 7.5 mg L pyrene and 39.5 ± 2.7 mg L BaP in LWW were removed. Analysis of post-bioremediation residues indicated the absence of any known toxic intermediates. The efficacy of bioremediation was further evaluated through cyto-genotoxicity assays using Allium cepa. The roots of A. cepa exposed to bioremediated LWW showed improved mitotic index, whereas original LWW completely arrested cell growth. Similarly, the alkaline comet assay indicated alleviation of genotoxicity in bioremediated LWW, as evidenced by significantly lower DNA damage in terms of tail DNA and Olive tail moment. In addition, oxidative stress assays, performed using fluorescent probes 2',7'-dichlorodihydrofluorescein diacetate, C11-BODIPY and dihydrorhodamine 123, revealed significant mitigation of oxidative stress potential in bioremediated LWW. Our findings suggest that the enrichment MM34X may prime the development of inexpensive and efficient large-scale bioremediation of LWW co-contaminated with PAHs and DMF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.116425DOI Listing

Publication Analysis

Top Keywords

bioremediated lww
12
bioremediation laboratory
8
laboratory wastewater
8
co-contaminated pahs
8
methylotrophic enrichment
8
enrichment culture
8
culture mm34x
8
lww
8
lww co-contaminated
8
oxidative stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!