Deep brain stimulation in obsessive-compulsive disorder: Results from meta-analysis.

Psychiatry Res

Child and Adolescent Mental Health Service, Jaén University Hospital Complex, Jaén, Spain; Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain.

Published: November 2022

The aim of this work is to investigate the effectiveness of Deep Brain Stimulation (DBS) in patients with severe Obsessive Compulsive Disorder (OCD) who are resistant to pharmacological treatments, focusing on obsessive compulsive, depressive and anxiety symptoms as well as global function. A systematic review and meta-analysis including 25 studies (without language restrictions) from between 2003 and 2020 was performed. A total of 303 patients were evaluated twice (before and after DBS). After DBS treatment OCD patients with resistance to pharmacological treatments showed a significant improvement of obsessive-compulsive symptoms (25 studies; SMD=2.39; 95% CI, 1.91 to 2.87; P<0.0001), depression (9 studies; SMD= 1.19; 95%CI, 0.84 to 1.54; P<0.0001), anxiety (5 studies; SMD=1.00; 95%CI, 0.32 to 1.69; P=0.004) and functionality (7 studies; SMD=-3.51; 95%CI, -5.00 to -2.02; P=0.005) measured by the standardized scales: Yale Brown Obsessive Compulsive Scale (YBOCS), Hamilton Depression Rating Scale (HAM-D), Hamilton Anxiety Rating Scale (HAM-A) and Global Assessment of Function (GAF). Publication bias were discarded by using funnel plot. The main conclusions of this meta-analysis highlight the statistically significant effectiveness of DBS in patients with severe OCD who are resistant to conventional pharmacological treatments, underlying its role in global functioning apart from obsessive-compulsive symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psychres.2022.114869DOI Listing

Publication Analysis

Top Keywords

deep brain
8
brain stimulation
8
obsessive compulsive
8
pharmacological treatments
8
stimulation obsessive-compulsive
4
obsessive-compulsive disorder
4
disorder meta-analysis
4
meta-analysis aim
4
aim work
4
work investigate
4

Similar Publications

Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.

View Article and Find Full Text PDF

A new vision of the role of the cerebellum in pain processing.

J Neural Transm (Vienna)

January 2025

Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.

The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.

View Article and Find Full Text PDF

Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals are important bioelectrical signals widely used in brain activity studies, cognitive mechanism research, and the diagnosis and treatment of neurological disorders. However, EEG signals are often influenced by various physiological artifacts, which can significantly affect data analysis and diagnosis. Recently, deep learning-based EEG denoising methods have exhibited unique advantages over traditional methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!