Circular Patterns of Dynamic Covalent Hydrogels with Gradient Stiffness for Screening of the Stem Cell Microenvironment.

ACS Appl Mater Interfaces

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.

Published: October 2022

As extracellular matrix (ECM) mimetic materials, hydrogels have been widely used for broad biomedical applications. However, with so many physical or chemical cues in the matrix that regulate cell behaviors or functions, it remains challenging to design a customizable hydrogel with the desired properties on demand. In the current study, we aim to establish a circular-patterned hydrogel model with gradient stiffness for screening the most favorable ECM environment for specific cells or certain application purposes. First, six types of hydrogels with a wide stiffness range of 1.2-28.9 kPa were prepared by dynamic covalent cross-linking between gelatin derivatives and oxidized hyaluronic acid. Taking advantage of their instantaneous self-healing property from dynamic chemistry, the hydrogels were further spliced into one whole piece of circular-patterned hydrogel. When rabbit bone marrow mesenchymal stem cells were seeded in the center, the influences of matrix stiffness on the regulation of stem cell adhesion, migration, and differentiation were directly observed and compared under one visual field. In addition, these hydrogels all possessed good biocompatibility, degradability, and injectability, showing great potential for tissue-engineering-related applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c14924DOI Listing

Publication Analysis

Top Keywords

dynamic covalent
8
gradient stiffness
8
stiffness screening
8
stem cell
8
circular-patterned hydrogel
8
hydrogels
5
circular patterns
4
patterns dynamic
4
covalent hydrogels
4
hydrogels gradient
4

Similar Publications

Boosting Multicolor Emission Enhancement in Two-Dimensional Covalent-Organic Frameworks via the Pressure-Tuned π-π Stacking Mode.

Nano Lett

January 2025

Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).

View Article and Find Full Text PDF

Anti-Mold Activities of Cationic Oligomeric Surfactants.

Langmuir

January 2025

CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Molds are persistent and harmful but receive far less research attention compared with pathogenic bacteria. With the increase in microbial resistance to single-chain surfactant antimicrobial agents, it is crucial to investigate how surfactant structures affect the antimicrobial activity of surfactants. Here, we have studied the antimold efficacy of a series of oligomeric cationic quaternary ammonium surfactants at varying oligomerization levels with or without dynamic covalent imine bonds.

View Article and Find Full Text PDF

Quasi-two-dimensional nanosheets exhibit novel properties and promising applications in optoelectronic flexible devices. Research on non-layered III-V semiconductor nanosheets has been constrained by their covalent bonding connections. In this study, GaAs/AlGaAs heterojunction nanosheets were prepared by releasing an epitaxial layer, and their optical properties were investigated by adopting steady-state and transient absorption spectroscopy.

View Article and Find Full Text PDF

Recent times have witnessed revolutionary progress in the design and development of functionalized nanomaterials as promising tools for biomedicinal applications. However, the gap in the fundamental understanding of the "biological responses" of the nanomaterials after the formation of "protein-corona" when it is exposed to the body system has drawn a thin line from its discoveries to real clinical trial. In this article we have synthesized two different silver NPs capped with the polyphenols of (guava) leaf extract and the other with one of its major polyphenolic groups, morin.

View Article and Find Full Text PDF

Cellulose nanofiber-reinforced antimicrobial and antioxidant multifunctional hydrogel with self-healing, adhesion for enhanced wound healing.

Carbohydr Polym

March 2025

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.

Current conventional wound dressings used for wound healing are often characterized by restricted bioactivity and devoid of multifunctionality resulting in suboptimal treatment and prolonged healing. Despite recent advances, the simultaneous incorporation of excellent flexibility, good mechanical performance, self-healing, bioactivity, and adhesion properties into the dressings without complicating their efficacy while maintaining simple synthesis remains a grand challenge. Herein, we effectively synthesized hybrid hydrogels of cellulose nanofiber (CNF), polyvinyl alcohol (PVA), and curcumin-modified silver nanoparticles (cAg) through a one-step synthesis method based on hydrogen bonds, dynamic boronic ester bonds, and coordinate covalent bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!