Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The search for dynamically screening the coupling between the scalar field and matter in high-density environment is achievable with the symmetron model. The high-accuracy and short-range gravity experiment is proposed to test the symmetron model. In this Letter, the data of the HUST-2020 torsion pendulum experiment testing the inverse-square law at submillimeter range is analyzed to constrain the symmetron model. The results show that the HUST-2020 experiment is uniquely sensitive to probe the symmetron model with a mass scale of μ=7.2×10^{-3} eV, and the self-coupling parameter λ≲105 is excluded at mass scale M=0.3 TeV. Especially, at the dark energy scale μ=2.4×10^{-3} eV, the constraint at M=1.3 TeV is improved by about 10 times the previous constraints on the torsion pendulum experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.141101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!