Nitrate pollution is a global problem as it affects both the environment and human health. The objective of this research was to study the effect of electrode configuration on the electro-reduction of nitrate. Coaxial cylindrical (inner rod and outer tube copper cathodes) and vertical plate parallel copper cathodes paired with Ti/RuO-IrO (rod, tube, and plate) configurations were studied under various current densities and initial nitrate concentrations. The efficiency of each configuration was determined based on the removal efficiency of nitrate, specific energy consumption, mass transfer coefficients, and first order rate constants. Additionally, the overall systems' resistance and geometric factors are discussed. It was found that the performances of the inner rod and outer tube copper cathodes were similar. The vertical plate parallel configuration was superior to the coaxial cylindrical electrode setup, as evident from a higher maximum nitrate removal of 74 and 56% at a current density of 7 mA/cm and lower energy consumption of 46.7 × 10 and 54.3 × 10 kWh/mmol NO at 36.4 mA/cm, respectively. In addition, the mass transfer coefficients and first order rate constants were higher in all conditions tested for the vertical plate parallel configuration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2022.262 | DOI Listing |
RSC Adv
January 2025
Department of Physics, BITS Pilani-Pilani Campus RJ-333031 India
The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico.
Thermus thermophilus HB27 laccase (Tth-Lac) is a thermostable enzyme that contains a β-hairpin (Ala292-Gln307) covering the substrate entrance. We analyzed the role of this β-hairpin in the enzymatic activity of Tth-Lac through three β-hairpin mutants: two variants without the β-hairpin (C1Tth-Lac and C2Tth-Lac) and one with a partially modified β-hairpin (P1Tth-Lac). Enzymatic activity was assayed with different substrates with and without copper.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
It is challenging to handle heavy-metal-rich plants that grow in contaminated soil. The role of heavy metals in biomass on the physicochemical structure and electrochemical properties of their derived carbon has not been considered in previous research. In this study, Cu-ion hybrid nanoporous carbon (CHNC) is prepared from Cu content-contaminated biomass through subcritical hydrocharization (HTC) coupling pyrolytic activation processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!