Learning techniques involve unraveling regression structures, which aim to analyze in a probabilistic frame the associations across variables of interest. Thus, analyzing fraction and/or proportion data may not be adequate with standard regression procedures, since the linear regression models generally assume that the dependent (outcome) variable is normally distributed. In this manner, we propose a statistical model called unit-Lindley regression model, for the purpose of Statistical Process Control (SPC). As a result, a new control chart tool was proposed, which targets the water monitoring dynamic, as well as the monitoring of relative humidity, per minute, of Copiapó city, located in Atacama Desert (one of the driest non-polar places on Earth), north of Chile. Our results show that variables such as wind speed, 24-hour temperature variation, and solar radiation are useful to describe the amount of relative humidity in the air. Additionally, Information Visualization (InfoVis) tools help to understand the time seasonality of the water particle phenomenon of the region in near real-time analysis. The developed methodology also helps to label unusual events, such as Camanchaca, and other water monitoring-related events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565758 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275841 | PLOS |
PLoS One
January 2025
UK Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom.
Surface water plays a vital role in the spread of infectious diseases. Information on the spatial and temporal dynamics of surface water availability is thus critical to understanding, monitoring and forecasting disease outbreaks. Before the launch of Sentinel-1 Synthetic Aperture Radar (SAR) missions, surface water availability has been captured at various spatial scales through approaches based on optical remote sensing data.
View Article and Find Full Text PDFPLoS One
January 2025
North China University of Water Resources and Electric Power, Zhengzhou City, Henan Province, P.R. China.
This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.
View Article and Find Full Text PDFPLoS One
January 2025
Bio Bureau Biotechnology, Rio de Janeiro, Rio de Janeiro, Brazil.
Monitoring biodiversity on a large scale, such as in hydropower reservoirs, poses scientific challenges. Conventional methods such as passive fishing gear are prone to various biases, while the utilization of environmental DNA (eDNA) metabarcoding has been restricted. Most eDNA studies have primarily focused on replicating results from traditional methods, which themselves have limitations regarding representativeness and bias.
View Article and Find Full Text PDFGround Water
January 2025
Département de Géologie et de génie géologique, Université Laval, Québec, Canada.
Deep monitoring wells with long screens crossing the transition zone between freshwater and saltwater are often used in coastal areas to characterize fresh groundwater resources and the depth of saline groundwater. However, past studies have demonstrated that long-screen wells can lead to biased observations of the transition zone, since vertical flow within the borehole can modify the shape and elevation of the transition zone in and around the borehole compared to undisturbed conditions without a well. Here, field observations and variable-density numerical flow simulations are used to evaluate, under natural flow conditions, how the installation of long-screen wells can provide time-varying biased observations of the freshwater-saltwater transition zone, and how various aquifer and well parameters affect the magnitude of these biases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!