Acacia (Leguminosae, Caesalpinioideae, mimosoid clade) is the largest and most widespread genus of plants in the Australian flora, occupying and dominating a diverse range of environments, with an equally diverse range of forms. For a genus of its size and importance, Acacia currently has surprisingly few genomic resources. Acacia pycnantha, the golden wattle, is a woody shrub or tree occurring in south-eastern Australia and is the country's floral emblem. To assemble a genome for A. pycnantha, we generated long-read sequences using Oxford Nanopore Technology, 10x Genomics Chromium linked reads, and short-read Illumina sequences, and produced an assembly spanning 814 Mb, with a scaffold N50 of 2.8 Mb, and 98.3% of complete Embryophyta BUSCOs. Genome annotation predicted 47,624 protein-coding genes, with 62.3% of the genome predicted to comprise transposable elements. Evolutionary analyses indicated a shared genome duplication event in the Caesalpinioideae, and conflict in the relationships between Cercis (subfamily Cercidoideae) and subfamilies Caesalpinioideae and Papilionoideae (pea-flowered legumes). Comparative genomics identified a suite of expanded and contracted gene families in A. pycnantha, and these were annotated with both GO terms and KEGG functional categories. One expanded gene family of particular interest is involved in flowering time and may be associated with the characteristic synchronous flowering of Acacia. This genome assembly and annotation will be a valuable resource for all studies involving Acacia, including the evolution, conservation, breeding, invasiveness, and physiology of the genus, and for comparative studies of legumes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565413 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274267 | PLOS |
J Neural Eng
January 2025
Department of Neuroscience, Northwestern University, 303 East Chicago Ave, Chicago, Illinois, 60611, UNITED STATES.
Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.
View Article and Find Full Text PDFLangmuir
January 2025
Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.
Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.
View Article and Find Full Text PDFACS Nano
January 2025
CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States.
Since their inception in the early 1960s, the development and use of nanoscale materials have progressed tremendously, and their roles in diverse fields ranging from human health to energy and electronics are undeniable. The application of nanotechnology inventions has revolutionized many aspects of everyday life including various medical applications and specifically drug delivery systems, maximizing the therapeutic efficacy of the contained drugs by means of bioavailability enhancement or minimization of adverse effects. In this review, we utilize the CAS Content Collection, a vast repository of scientific information extracted from journal and patent publications, to analyze trends in nanoscience research relevant to drug delivery in an effort to provide a comprehensive and detailed picture of the use of nanotechnology in this field.
View Article and Find Full Text PDFFree Neuropathol
January 2024
Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!