Pectin oligosaccharides (POS) are pectin-derived prebiotics that exerts anti-inflammatory effects on the host and stimulates an innate immune response. The role of POS in protective immunity against viral infections is not very obvious. Therefore, the prophylactic effect of POS in the mouse model induced by Poly I: C mimicking viral infection was examined. Mice fed POS showed a significant (p ≤ .05) increase in IgG, sIgA, IgA, IL-12, and a significant (p ≤ .05) decrease in the concentration of pro-inflammatory cytokines IL-5, IL-6, IL-13 and IL-17 in lung and blood serum after Poly I: C stimulation. However, the control group could not inhibit pro-inflammatory cytokines. POS also promoted the growth of the Lactobacillus, Prevotella, Rilenellaceae, and Lachanospiraceae groups. Therefore, this study demonstrate that POS has the potiential to protect against viral inflammation by altering gut microbiota and activating mucosal immunity. PRACTICAL APPLICATIONS: POS is 2-10 mer oligomers of pectin. The human gastrointestinal tract lacks the enzyme to break down POS. They are fermented by gut bacteria in the colon and stimulate the proliferation of specific gut bacteria that are positively correlated with the production of anti-inflammatory cytokines and SCFA. POS also stimulates the secretion of IgA, which inhibits bacterial and viral adhesion and protects the host. Therefore, POS can be used as a functional food ingredient in food to stimulate a specific group of gut bacteria and enhance preventive immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfbc.14459 | DOI Listing |
ACS Nano
December 2024
Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China.
Microplastics, rapidly expanding and durable pollutant, have been shown to significantly impact gut microbiota across a spectrum of animal species. However, comprehensive analyses comparing microplastic effects on gut microbiota among these species are still limited, and the critical factors driving these effects remain to be clarified. To address these issues, we compiled 1352 gut microbiota samples from six animal categories, employing machine learning to conduct an in-depth meta-analysis.
View Article and Find Full Text PDFmSphere
December 2024
Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both and in the dextran sodium sulfate (DSS) mouse model of colitis.
View Article and Find Full Text PDFJ Virol
December 2024
Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Phages, as antagonists of bacteria, hold significant promise for combating drug-resistant bacterial infections. Their host specificity allows phages to target pathogenic bacteria without disrupting the gut microbiota, offering distinct advantages in the prevention and control of intestinal pathogens. The interaction between the phage and the gut plays a crucial role in the efficacy of phage-mediated bacterial killing.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.
Background: Normal weight obesity (NWO) is characterized by excess body fat in individuals with normal body mass index (BMI). This study aimed to investigate gut microbiota alterations in NWO and their potential associations with cardiometabolic diseases (CMD) risk in two independent cohorts.
Methods: Our NWO-CMD mortality analysis included 168 099 adults with normal BMI from two large open-access databases, while our NWO-gut microbiota study involved 5467 adults with normal BMI from two independent cohorts: the WELL-China cohort and the Lanxi cohort.
CNS Neurosci Ther
December 2024
Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
Background: Cognitive impairment is a common and feared characteristic of aging processes, and one key mechanism of cognition is hippocampal synaptic structure. Previous studies have reported that gut microbiota dysbiosis occurred in neurodegenerative diseases and other brain disorders with cognitive impairment. However, it is not clear how gender differences affect cognitive impairment in aging processes and whether they affect synaptic structure and gut microbiota.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!