Background: The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients.

Methods: Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial.

Results: We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2-7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset.

Conclusions: Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models.

Funding: Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford's Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566856PMC
http://dx.doi.org/10.7554/eLife.77943DOI Listing

Publication Analysis

Top Keywords

early immune
20
immunological outcomes
16
immune markers
12
disease progression
12
cell antibody
12
clinical immunological
8
covid-19 patients
8
markers subsequent
8
subsequent disease
8
progression control
8

Similar Publications

CCL3 as a novel biomarker in the diagnosis of necrotizing enterocolitis.

BMC Pediatr

December 2024

Department of Clinical Laboratory, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, NO 136 Zhongshaner Road, Yuzhong Distrit, Chongqing, 400014, China.

Objectives: Neonatal necrotizing enterocolitis (NEC) is a common intestinal disease that threatens the lives of newborns and is characterized by ischemic necrosis of the small intestine and colon. As early diagnosis of NEC improves prognosis, the identification of new or complementary biomarkers is of great importance. In this study, we evaluate the diagnostic value of CCL3 in NEC and compare its effectiveness with other commonly used biomarkers, such as procalcitonin (PCT) and C-reactive protein (CRP).

View Article and Find Full Text PDF

Updates on the Pathogenesis of Canine and Feline Atopic Dermatitis: Part 1, History, Breed Prevalence, Genetics, Allergens, and the Environment.

Vet Clin North Am Small Anim Pract

December 2024

College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 408 Raymond Stotzer Parkway, College Station, TX 77845, USA. Electronic address:

Canine atopic dermatitis (cAD) and feline atopic skin syndrome are inflammatory and pruritic skin diseases with both environmental and genetic factors. Genetic factors may include barrier defects and a predisposition to mount T helper 2 lymphocyte immune response when allergens are encountered. These diseases have repeatable patterns of skin and ear inflammation and commonly lead to Staphylococcal and Malassezia skin and ear infections.

View Article and Find Full Text PDF

m6A methylation dynamically participates in the immune response against Vibrio anguillarum in half-smooth tongue sole (Cynoglossus semilaevis).

Fish Shellfish Immunol

December 2024

Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:

N6-methyladenosine (m6A) is the most prevalent RNA modification and a multifaceted regulator capable of affecting various aspects of mRNA metabolism, thereby playing important roles in numerous physiological processes. However, it is still unknown whether, when, and to what extent m6A modulation are implicated in the immune response of an economically important aquaculture fish, half-smooth tongue sole (Cynoglossus semilaevis). Herein, we systematically profiled and characterized the m6A epitranscriptome and transcriptome in C.

View Article and Find Full Text PDF

Ginsenoside Ro prevents endothelial injury via promoting Epac1/AMPK- mediated mitochondria protection in early diabetic retinopathy.

Pharmacol Res

December 2024

Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education. Electronic address:

Diabetic retinopathy (DR) is a blinding complication of microangiopathy. First-line therapeutic drugs are all focused on late-stage DR and have several side effects, which could not meet clinical needs. The plant-derived ginsenoside Ro (Ro) has a variety of effective anti-inflammatory, immune-regulating, and cardiovascular protective effects, but its microvascular protective effects are rarely studied.

View Article and Find Full Text PDF

Pulmonary and systemic effects of inhaled crystalline silica in the HOCl-induced mouse model of systemic sclerosis: An experimental model of Erasmus syndrome.

Clin Immunol

December 2024

Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France. Electronic address:

Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!