All-solid-state batteries have recently gained considerable attention due to their potential improvements in safety, energy density, and cycle-life compared to conventional liquid electrolyte batteries. Sodium all-solid-state batteries also offer the potential to eliminate costly materials containing lithium, nickel, and cobalt, making them ideal for emerging grid energy storage applications. However, significant work is required to understand the persisting limitations and long-term cyclability of Na all-solid-state-based batteries. In this work, we demonstrate the importance of careful solid electrolyte selection for use against an alloy anode in Na all-solid-state batteries. Three emerging solid electrolyte material classes were chosen for this study: the chloride NaYZrCl, sulfide NaPS, and borohydride Na(BH)(BH). Focused ion beam scanning electron microscopy (FIB-SEM) imaging, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) were utilized to characterize the evolution of the anode-electrolyte interface upon electrochemical cycling. The obtained results revealed that the interface stability is determined by both the intrinsic electrochemical stability of the solid electrolyte and the passivating properties of the formed interfacial products. With appropriate material selection for stability at the respective anode and cathode interfaces, stable cycling performance can be achieved for Na all-solid-state batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614718 | PMC |
http://dx.doi.org/10.1021/acsami.2c12759 | DOI Listing |
All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.
View Article and Find Full Text PDFAdv Mater
January 2025
Materials Science and Engineering Program, Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
Anode-free all solid-state batteries (AF-ASSBs) employ "empty" current collector with three active interfaces that determine electrochemical stability; lithium metal - Solid electrolyte (SE) interphase (SEI-1), lithium - current collector interface, and collector - SE interphase (SEI-2). Argyrodite LiPSCl (LPSCl) solid electrolyte (SE) displays SEI-2 containing copper sulfides, formed even at open circuit. Bilayer of 140 nm magnesium/30 nm tungsten (Mg/W-Cu) controls the three interfaces and allows for state-of-the-art electrochemical performance in half-cells and fullcells.
View Article and Find Full Text PDFNat Mater
January 2025
Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA.
Lithium-sulfur (Li-S) all-solid-state batteries (ASSBs) hold great promise for next-generation safe, durable and energy-dense battery technology. However, solid-state sulfur conversion reactions are kinetically sluggish and primarily constrained to the restricted three-phase boundary area of sulfur, carbon and solid electrolytes, making it challenging to achieve high sulfur utilization. Here we develop and implement mixed ionic-electronic conductors (MIECs) in sulfur cathodes to replace conventional solid electrolytes and invoke conversion reactions at sulfur-MIEC interfaces in addition to traditional three-phase boundaries.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues.
View Article and Find Full Text PDFACS Omega
December 2024
HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary.
Lithium phosphorus oxynitride (LiPON) is a crucial electrolyte for all-solid-state thin-film batteries due to its sufficient ionic conductivity. Understanding the mechanical behavior of LiPON films is crucial for further technological development. Previous studies noted unexpected ductility and strain recovery in amorphous LiPON during sharp-ended tip indentations revealing pile-up formation and densification as the main deformation mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!