Using a Single Peptide to Electrochemically Sense Multiple Kinases.

Biochemistry

Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel.

Published: January 2023

Kinases are responsible for regulating cellular and physiological processes, and abnormal kinase activity is associated with various diseases. Therefore, kinases are being used as biomarkers for disease and developing methods for their sensing is highly important. Usually more than one kinase is involved in phosphorylating a target protein. However, kinase detection methods usually detect the activity of only one specific kinase. Here we describe an electrochemical kinase sensing tool for the selective detection of two kinases using the same target peptide. We demonstrate the sensing of kinases ERK2 and PKCδ. This is based on a single sensing element, a peptide that contains two distinct phosphorylation sites of these two kinases. Reversibility experiments with alkaline phosphatase and reaction with the electrochemically active ferrocene-labeled ATP showed that the mechanism of sensing is by detecting the enzymatic phosphorylation. Our approach can be further utilized to develop devices for the detection of multiple kinases and can be expanded to other types of enzymes involved in disease.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.2c00411DOI Listing

Publication Analysis

Top Keywords

multiple kinases
8
kinases
7
kinase
5
sensing
5
single peptide
4
peptide electrochemically
4
electrochemically sense
4
sense multiple
4
kinases kinases
4
kinases responsible
4

Similar Publications

: Tumor associated macrophages (TAMs) are critical components in regulating the immune statuses of the tumor microenvironments. Although TAM has been intensively studied, it is unclear how mitochondrial proteins such as AGK regulate the TAMs' function. : We investigated the AGK function in TAMs using macrophage-specific deficient mice with B16 and LLC syngeneic tumor models.

View Article and Find Full Text PDF

Gastric cancer (GC) has become a major challenge in oncology research, primarily due to its detection at advanced stages. In this study, we identified and validated the pharmacological mechanisms involved in treating gastric cancer using an integrated approach combining network pharmacology, molecular docking, and a dynamic approach. Gastric cancer-related genes were obtained from DisGeNET, Genecard, and Malacard databases, while potential targets of bioactive compounds were predicted using SwissTargetPrediction.

View Article and Find Full Text PDF

The most common type of liver cancer is hepatocellular carcinoma (HCC), accounting for 75-85% of cases. Despite its associated side effects, sorafenib remains the standard treatment for HCC. Given the critical need to improve therapeutic efficacy while minimizing adverse effects, alternative drugs must be thoroughly investigated.

View Article and Find Full Text PDF

The therapeutic potential of bitter leaf ( Del.) has been established both empirically and in various scientific investigations. However, the molecular pathways related to its possible anti-inflammatory and antioxidant properties remain unclear.

View Article and Find Full Text PDF

Background: Regorafenib, approved in China for the third-line treatment of patients with metastatic colorectal cancer (mCRC), targets multiple tyrosine kinases. We retrospectively evaluated the efficacy and safety of regorafenib, both as monotherapy and in combination with capecitabine or immune checkpoint inhibitors (ICIs), as a second-line treatment for patients unable to access hospital-based care due to limited hospital visits during the coronavirus disease 2019 (COVID-19) pandemic.

Methods: Retrospective analysis was conducted on individual patient data from Peking University Third Hospital, covering the period from January 2020 to September 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!