Chemical contamination from point source discharges in developed (resource-rich) countries has been widely regulated and studied for decades; however, diffuse sources are largely unregulated and widespread. In the European Union (EU), large dischargers report releases of some chemicals, yet little is known of total emissions (point and diffuse) and their relative significance. We estimated copper loadings from all significant sources including industry, sewage treatment plants, surface runoff (from traffic, architecture, and atmospheric deposition), septic tanks, agriculture, mariculture, marine transport (antifoulant leaching), and natural processes. A combination of European datasets, literature, and industry data were used to generate export coefficients. These were then multiplied by activity rates to derive loads. A total of approximately 8 kt of copper per annum (ktpa) is estimated to enter freshwaters in the EU, and another 3.5 ktpa enters transitional and coastal waters. The main inputs to freshwater are natural processes (3.7 ktpa), agriculture (1.8 ktpa), and runoff (1.8 ktpa). Agricultural emissions are dominated by copper-based plant protection products and farmyard manure. Urban runoff is influenced by copper use in architecture and by vehicle brake linings. Antifoulant leaching from boats (3.2 ktpa) dominates saline water loads of copper. It is noteworthy that most of the emissions originate in a limited number of copper uses where environmental exposure and pathways exist, compared with the bulk of copper use within electrical and electronic equipment and infrastructure that has no environmental pathway during its use. A sensitivity analysis indicated significant uncertainty in data from abandoned mines and urban runoff load estimates. This study provided for the first time a methodology and comprehensive metal load apportionment to European aquatic systems, identifying data gaps and uncertainties, which may be refined over time. Source apportionments using this methodology can inform more cost-effective environmental risk assessment and management. Integr Environ Assess Manag 2023;19:1031-1047. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ieam.4700 | DOI Listing |
Microb Biotechnol
January 2025
Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.
The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
Freshwater ecosystems face significant threats, including pollution, habitat loss, invasive species, and climate change. To address these challenges, management strategies and restoration efforts have been broadly implemented. Across Europe, such efforts have resulted in overall improvements in freshwater biodiversity, but recovery has stalled or failed to occur in many localities, which may be partly caused by the limited dispersal capacity of many species.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:
A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), Yliopistonkatu 34, 53850, Lappeenranta, Finland.
As the global consumption of pharmaceuticals increases, so does their release into water bodies. The effects, although not fully understood, can be detrimental to aquatic ecosystems and human health. The new Urban Wastewater Treatment Directive (UWWTD) in European Union requires implementation of quaternary wastewater treatment processes to limit the loads of pharmaceuticals reaching water bodies.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
European Commission, Joint Research Centre (JRC), Geel, Belgium.
When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for the preparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!