Interfacial Designing of MnO Half-Wrapped by Aromatic Polymers for High-Performance Aqueous Zinc-Ion Batteries.

Angew Chem Int Ed Engl

Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Published: December 2022

Due to the excellent specific capacity and high working voltage, manganese oxide (MnO ) has attracted considerable attention for aqueous zinc-ion batteries (AZIBs). However, the irreversible structural collapse and sluggish ionic diffusion lead to poor rate capability and inferior lifespan. Herein, we proposed a novel organic/inorganic hybrid cathode of carbon-based poly(4,4'-oxybisbenzenamine)/MnO (denoted as C@PODA/MnO ) for AZIBs. Various in/ex situ analyses and theoretical calculations prove that PODA chains with C=N groups can provide a more active surface/interface for ion/electron mobility and zinc ion storage in the hybrid cathode. More importantly, newly formed Mn-N interfacial bonds can effectively promote ion diffusion and prevent Mn atoms dissolution, enhancing redox kinetics and structural integrity of MnO . Accordingly, C@PODA/MnO cathode exhibits high capacity (321 mAh g or 1.7 mAh cm at 0.1 A g ), superior rate performance (88 mAh g at 10 A g ) and excellent cycling stability over 2000 cycles. Hence, rational interfacial designs shed light on the development of organic/inorganic cathodes for advanced AZIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202212231DOI Listing

Publication Analysis

Top Keywords

aqueous zinc-ion
8
zinc-ion batteries
8
hybrid cathode
8
interfacial designing
4
designing mno
4
mno half-wrapped
4
half-wrapped aromatic
4
aromatic polymers
4
polymers high-performance
4
high-performance aqueous
4

Similar Publications

Polyhydroxy starch with abundant hydroxyls and a unique structure enables uniform Zn deposition.

Chem Commun (Camb)

January 2025

Laboratory of Advanced Materials, Aqueous Batteries Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.

Zinc metal is a promising anode material for zinc-ion batteries (ZIBs), but severe side reactions and dendrite formation hinder its commercialization. In this study, starch is introduced into the ZnSO electrolyte for stabilizing the Zn anode. With abundant hydroxyl groups, starch can reconstruct the H-bond system in the electrolyte, suppressing side reactions.

View Article and Find Full Text PDF

Engineering vanadium vacancies to accelerate ion kinetics for high performance zinc ion battery.

J Colloid Interface Sci

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:

Vanadium dioxide (VO) has attracted significant attention in aqueous zinc ion batteries (AZIBs) owing to their desirable theoretical specific capacity originated from multiple electrons transfer reaction and special crystal structure. However, sluggish electrochemical kinetics leads to inferior electrochemical storage performance. Herein, rich vanadium vacancies were introduced in tunnel VO to boost Zn diffusion, increasing charge storage capacity and lengthen lifespan.

View Article and Find Full Text PDF

The growing energy demands have led to an increased attention towards the development of efficient energy storage devices. In this direction, aqueous rechargeable batteries have attracted considerable attention due to their affordability, environmental friendliness and quite importantly, safety. In the present studies, a two-dimensional copolymer of benzoquinone and pyrrole that is insoluble in aqueous solutions is explored as an electrode for aqueous, rechargeable divalent ion storage.

View Article and Find Full Text PDF

Design and manufacture of cathode materials, with suitable pore structure and high electrical conductivity to matching zinc anode, solving the problem of dissolution and structural degradation of cathode materials for zinc ion batteries (ZIBs), is great significance to the development of ZIBs. Herein, Vanadium Nitride (VN) uniformly decorated N-doped micro/mesoporous carbon nanofibers (VN/N-MCNF) with appropriate porous and reactive sites for Zn2+ is prepared by using V-MOF, as important precursor via electrostatic spinning and pyrolysis technique. As a cathode electrode for ZIBs, the VN/N-MCNF is suitable for diffusion and adsorption of large-sized solvated structured [Zn(H2O)6]2+, for its abundant micro/mesoporous structure and good electrical conductivity.

View Article and Find Full Text PDF

Long-standing challenges including notorious side reactions at the Zn anode, low Zn anode utilization, and rapid cathode degradation at low current densities hinder the advancement of aqueous zinc-ion batteries (AZIBs). Inspired by the critical role of capping agents in nanomaterials synthesis and bulk crystal growth, a series of capping agents are employed to demonstrate their applicability in AZIBs. Here, it is shown that the preferential adsorption of capping agents on different Zn crystal planes, coordination between capping agents and Zn ions, and interactions with metal oxide cathodes enable preferred Zn (002) deposition, water-deficient Zn ion solvation structure, and a dynamic cathode-electrolyte interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!