Due to the lower regeneration capacity of the osteoporotic bone, the treatment of osteoporotic defects is extremely challenging in clinics. In this study, strontium-doped bioactive glass nanoparticles loaded with sodium alendronate (ALN), namely A-SrBG, were incorporated into the poly(ether-ether-ketone) matrix to fabricate a bioactive composite scaffold (ASP), which was expected to both inhibit bone resorption and promote bone regeneration. The results showed that such a composite scaffold with interconnected macropores (200-400 μm) could release Ca, Sr, and ALN . The proliferation, alkaline phosphatase (ALP) activity, expression of osteogenesis-related genes, and formation of calcified nodules of rat bone marrow stromal cells (rBMSCs) were clearly evidenced, and the reduction in the proliferation, tartrate-resistant acid phosphatase (TRAP) activity, cell fusion, and expression of osteoclastogenesis-related genes of osteoclasts was observed as well. In the presence of the ASP scaffold, enhanced osteogenesis along with inhibiting osteoclastogenesis was observed by modulating the osteoprotegerin (OPG)/receptor activator for nuclear factor κB ligand (RANKL) ratio. The efficacy of the composite scaffold in the regeneration of osteoporotic critical-sized cranial defect in a rat model was evaluated. Therefore, the bioactive composite scaffold with excellent biocompatibility and osteogenic potential could be a promising material for the repair of osteoporotic bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb01387hDOI Listing

Publication Analysis

Top Keywords

composite scaffold
16
osteoporotic bone
12
regeneration osteoporotic
8
bioactive composite
8
scaffold
6
bone
6
osteoporotic
5
bioactive
4
bioactive polyether-ether-ketone
4
polyether-ether-ketone nanocomposite
4

Similar Publications

Bone Tissue Engineering: From Biomaterials to Clinical Trials.

Adv Exp Med Biol

January 2025

Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.

Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.

View Article and Find Full Text PDF

Silk-based biomaterials for tissue engineering.

Adv Colloid Interface Sci

January 2025

Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:

Tissue engineering (TE) involves repairing, replacing, regeneration, or improving the function of tissues and organs by combining cells, growth factors and scaffold materials. Among these, scaffold materials play a crucial role. Silk fibroin (SF), a natural biopolymer, has been widely used in the TE field due to its good biodegradability, biocompatibility, and mechanical properties attributed to its chemical composition and structure.

View Article and Find Full Text PDF

Flexible sweat sensors play a crucial role in health monitoring and disease prevention by enabling real-time, non-invasive assessment of human physiological conditions. Sweat contains a variety of biomarkers, offering valuable insights into an individual's health status. In this study, we developed an advanced flexible electrochemical sensor featuring reduced graphene oxide (rGO)-based electrodes, modified with a composite material comprising nitrogen and sulfur co-doped holey graphene (HG) and MXene, with in-situ-grown TiO nanoparticles on the MXene.

View Article and Find Full Text PDF

A range of heterocyclic compounds, including Isatin (oneH-indole-2, 3-dione) and its by-products, have been shown to represent potential unit blocks in the synthesis of potential medicinal agents. Numerous studies have been carried out on isatin, its synthesis, biological uses, and its chemical composition since when it was discovered. Functionally, these isatin-containing heterocycles have demonstrated antibacterial, antidiabetic, antiviral, antitubercular, and anticancer properties, among many others.

View Article and Find Full Text PDF

Generation of bovine decellularized testicular bio-scaffolds as a 3D platform for testis bioengineering.

Front Bioeng Biotechnol

January 2025

Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.

Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced only in the mouse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!