Density-tunable pathway complexity in a minimalistic self-assembly model.

Soft Matter

Scuola Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy.

Published: November 2022

An open challenge in self-assembly is learning how to design systems that can be conditionally guided towards different target structures depending on externally-controlled conditions. Using a theoretical and numerical approach, here we discuss a minimalistic self-assembly model that can be steered towards different types of ordered constructs at the equilibrium by solely tuning a facile selection parameter, namely the density of building blocks. Metadynamics and Langevin dynamics simulations allow us to explore the behavior of the system in and out of equilibrium conditions. We show that the density-driven tunability is encoded in the pathway complexity of the system, and specifically in the competition between two different main self-assembly routes. A comprehensive set of simulations provides insight into key factors allowing to make one self-assembling pathway prevailing on the other (or ), determining the selection of the final self-assembled products. We formulate and validate a practical criterion for checking whether a specific molecular design is predisposed for such density-driven tunability of the products, thus offering a new, broader perspective to realize and harness this facile extrinsic control of conditional self-assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm00968dDOI Listing

Publication Analysis

Top Keywords

pathway complexity
8
minimalistic self-assembly
8
self-assembly model
8
density-driven tunability
8
self-assembly
5
density-tunable pathway
4
complexity minimalistic
4
model open
4
open challenge
4
challenge self-assembly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!