Simple and efficient detection and mapping method based on a strong turn-on fluorescent pigment was developed for fingerprint analysis. We present a phosphor powder characterized by strong emission which is useful to achieve better fingerprint detection on multicolored or photoluminescent surfaces, such as currency notes characterized by optically changeable inks and highly fluorescent positions, because it offers better contrast and reduce the difficulty of background interference. Novel photochromic ink was prepared to establish a fingerprinted colorless film onto cellulose documents with green emission for anticounterfeiting applications as illustrated by photoluminescence spectra. Inorganic/organic nanoscale composite ink was prepared from rare-earth doped aluminate phosphor nanoparticles (PNPs; 27-49 nm) dispersed in a polyacrylic acid binding agent. PNPs were dispersed efficiently in polyacrylic acid to generate a colorless mark. The produced photochromic inks were spray-coated onto off-white paper sheets enclosing invisible fingermarks, and then exposed to thermofixation. Photochromic film was detected on paper surface presenting a transparent appearance under visible daylight and switchable to green under UV light. The CIE Lab parameters and photoluminescence spectra were studied under visible light and ultraviolet irradiation. The fingerprinted sheets showed fluorescence band at 517 nm upon excitation at 366 nm, showing a bathochromic shift and reversible photochromism without fatigue. The morphologies of pigment phosphor particles and fingerprinted sheets were inspected. The rheological properties of ink and mechanical behavior of the fingerprinted paper samples were explored. HIGHLIGHTS: Novel smart ink with alkaline-earth aluminate and polyacrylic acid was developed. Dual-mode fluorescent photochromism was presented for latent fingerprint analysis. Off-white fingerprinted films under daylight showed color change to green under UV. Fluorescence band monitored at 517 nm upon excitation at 366 nm. Fluorescent fingermark on paper sheets demonstrated good photostability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.24244 | DOI Listing |
Adv Healthc Mater
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion.
View Article and Find Full Text PDFRSC Adv
January 2025
Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 Zhejiang China
Waterproof fatliquoring agents can transform leather from a hydrophilic state to a hydrophobic state in the wet process of leather production. However, traditional waterproof fatliquoring agents may cause environmental pollution. Fluorocarbons in fluorinated fatliquoring agents are difficult to degrade, and polyacrylic acid fatliquoring agents require chromium powder fixation.
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
January 2025
Department of Preventive Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia.
Impact of surface conditioner phytic acid (IP6) Er,Cr:YSGG laser (ECYL) methylene blue photodynamic therapy (MB-PDT) on the microleakage and shear bond strength (SBS) of resin-modified glass ionomer cement (RMGIC) to primary sound dentin. Overall, 80 extracted sound primary molars were collected followed by their submergence in self-cure acrylic resin. The dentin surface was exposed and made flat and was assigned into four groups based on the surface conditioning.
View Article and Find Full Text PDFAdv Mater
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China.
Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!