The present study aimed to clarify the role of microRNA (miR)-5590-3p in the progression of renal cell carcinoma (RCC) and investigate the underlying mechanisms. The expression levels of miR-5590-3p, Rho-associated protein kinase (ROCK)2 and β-catenin in RCC cells were measured by reverse transcription-quantitative PCR and western blot analysis. Following overexpression of miR-5590-3p and ROCK2 by transfection of miR-5590-3p mimics and GV367-ROCK2, respectively, changes in the proliferation, migration and invasion of RCC cells were determined through colony-formation, wound-healing and Transwell assays, respectively. The direct binding interaction between miR-5590-3p and ROCK2, initially predicted using Targetscan, was validated by a dual-luciferase reporter assay. The results indicated that miR-5590-3p was downregulated in RCC. Overexpression of miR-5590-3p led to downregulation of ROCK2 and β-catenin and inhibited the proliferation, migration and invasion of RCC cells. The dual-luciferase reporter assay confirmed the binding relationship between miR-5590-3p and ROCK2. Of note, overexpression of ROCK2 effectively reversed the regulatory effects of miR-5590-3p on RCC cells. In conclusion, miR-5590-3p inhibits the proliferation, migration and invasion of RCC cells by targeting ROCK2, which is a potential molecular biomarker and therapeutic target for RCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494665PMC
http://dx.doi.org/10.3892/ol.2022.13497DOI Listing

Publication Analysis

Top Keywords

rcc cells
20
proliferation migration
16
migration invasion
16
mir-5590-3p rock2
12
invasion rcc
12
mir-5590-3p
11
mir-5590-3p inhibits
8
inhibits proliferation
8
cells targeting
8
rock2
8

Similar Publications

Spatial transcriptomics has emerged as a powerful tool for discerning the heterogeneity of the tumour microenvironment across various cancers, including renal cell carcinoma (RCC). Spatial transcriptomics-based studies conducted in clear-cell RCC (the only RCC subtype studied using this technique to date) have given insights into spatial interactions within this disease. These insights include the role of epithelial-to-mesenchymal transitioning, revealing proximity-dependent interactions between tumour cells, fibroblasts, interleukin-2-expressing macrophages and hyalinized regions.

View Article and Find Full Text PDF

Growth inhibition and toxicity assessments of cis-3,4-diaryl-α-methylene-γ-butyrolactams in cultured human renal cancer cells and zebrafish embryos.

Biochim Biophys Acta Gen Subj

January 2025

Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan. Electronic address:

This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, cis-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1-8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(wt1b:egfp) were used to assess the toxicities of compounds 5, 6, and 8.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development.

View Article and Find Full Text PDF

Purpose: The study aimed to investigate the effect and mechanism of monotropein on renal cell carcinoma (RCC).

Methods: After monotropein and NF-κB receptor activator (RANKL) treatment, cell proliferation, invasion, and apoptosis were evaluated using CCK-8, Transwell, and flow cytometry. Primary macrophages co-cultured with monotropein-treated RCC cells were analyzed to evaluate macrophage polarization using qRT-PCR, western blot, and ELISA assays by detecting the expression of M2 markers (CD206, CD168) and cytokines (IL-10, TGF-β).

View Article and Find Full Text PDF

Elucidating the anticancer potential of dendrobine in renal cell carcinoma treatment.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, No.1111 Xian Xia Road, Shanghai, 200336, China.

Renal cell carcinoma (RCC) is the predominant form of kidney cancer. Despite the significant improvements in survival rates for advanced RCC patients due to targeted therapy and immunotherapy, challenges such as drug resistance and severe adverse reactions continue to hinder effective management. Therefore, there is an urgent need to identify new therapeutic agents for RCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!