Isolating mineralized bone and bone marrow mRNA from transiliac bone biopsies stored in a stabilizing solution: A comparative study.

Bone Rep

Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium.

Published: December 2022

The molecular mechanisms underlying metabolic bone diseases, including renal osteodystrophy, are poorly understood. Transcriptomics are increasingly used to characterize biological molecular networks and prove promising in identifying therapeutic targets and biomarkers. A reliable method for obtaining sufficient amounts of high quality RNA from human bone biopsies is a prerequisite for the implementation of molecular diagnostics in clinical research and practice. The present study aimed to develop a simple and adequate method for isolating bone and bone marrow mRNA from transiliac bone biopsies. Several storage, separation, and extraction procedures were compared. The procedure was optimized in pig samples and subsequently validated in human samples. Appropriate amounts of mineralized bone and bone marrow mRNA of moderate to high quality were obtained from transiliac bone biopsies that were immersed in the stabilizing solution Allprotect Tissue Reagent at room temperature for up to 3 days prior to freezing. After thawing, bone marrow and mineralized bone were separated by a multistep centrifugation procedure and subsequently disrupted and homogenized by a bead crusher. Appropriate separation of mineralized bone and bone marrow was confirmed by discriminatory gene expression profiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9551114PMC
http://dx.doi.org/10.1016/j.bonr.2022.101624DOI Listing

Publication Analysis

Top Keywords

bone marrow
20
mineralized bone
16
bone bone
16
bone biopsies
16
bone
15
marrow mrna
12
transiliac bone
12
mrna transiliac
8
stabilizing solution
8
high quality
8

Similar Publications

Clonal hematopoiesis of indeterminate potential (CHIP) is a condition where blood or bone marrow cells carry mutations associated with hematological malignancies. Individuals with CHIP have an increased risk of developing hematological malignancies, atherosclerotic cardiovascular disease, and all-cause mortality. Bone marrow transplantation (BMT) of cells carrying CHIP mutations into irradiated mice are useful procedures to investigate the dynamics of clonal expansion and potential therapeutic strategies, but myeloablative conditioning can induce confounding effects.

View Article and Find Full Text PDF

Background: Osteoporosis (OP) is a systemic disease characterized by low bone mass. New progress has been made in the study of OP, such as lipid peroxidation. However, the role of lipid peroxides in osteoclast differentiation is still unclear.

View Article and Find Full Text PDF

Severe pregnancy-associated atypical hemolytic uremia syndrome in the context of the COVID-19 pandemic: a novel survival case report.

BMC Pregnancy Childbirth

January 2025

Department of Intensive Care Medicine, Army Medical Center of PLA, No. 10 Changjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.

Background: Pregnancy-associated atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by uncontrolled activation of the complement system during pregnancy or the postpartum period. In the intensive care unit, aHUS must be differentiated from sepsis-related multiple organ dysfunction, thrombotic thrombocytopenic purpura (TTP), hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome. Early recognition of aHUS is critical for effective treatment and improved prognosis.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment.

View Article and Find Full Text PDF

The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis. Nuclear receptors (NRs) are now understood to be crucial in bone physiology and pathology. However, the function of the Farnesoid X receptor (FXR), a member of the NR family, in regulating bone homeostasis remains incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!