Infection with leads to the development of tuberculosis (TB) with the formation of granulomatous lesions. Foamy macrophages (FM) are a hallmark of TB granulomas, because they provide the primary platform of proliferation and the main source of caseous necrosis. In this study, we applied spatial multiomic profiling to identify the signatures of FM within the necrotic granulomas developed in a mouse model resembling human TB histopathology. C3HeB/FeJ mice were infected with to induce the formation of necrotic granulomas in the lungs. Using laser microdissection, necrotic granulomas were fractionated into three distinct regions, including the central caseous necrosis, the rim containing FM, and the peripheral layer of macrophages and lymphocytes, and subjected to proteomic and transcriptomic analyses. Comparison of proteomic and transcriptomic analyses of three distinct granulomatous regions revealed that four proteins/genes are commonly enriched in the rim region. Immunohistochemistry confirmed the localization of identified signatures to the rim of necrotic granulomas. We also investigated the localization of the representative markers for M1 macrophages in granulomas because the signatures of the rim included M2 macrophage markers. The localization of both macrophage markers suggests that FM in necrotic granulomas possessed the features of M1 or M2 macrophages. Gene set enrichment analysis of transcriptomic profiling revealed the upregulation of genes related to M2 macrophage activation and mTORC1 signaling in the rim. These results will provide new insights into the process of FM biogenesis, leading to further understanding of the pathophysiology of TB granulomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9551193PMC
http://dx.doi.org/10.3389/fcimb.2022.968543DOI Listing

Publication Analysis

Top Keywords

necrotic granulomas
20
spatial multiomic
8
multiomic profiling
8
foamy macrophages
8
granulomatous lesions
8
c3heb/fej mice
8
mice infected
8
granulomas
8
caseous necrosis
8
three distinct
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!