To treat congenital heart disease, it is important to understand the anatomical structure correctly. Three-dimensional (3D) printed models of the heart effectively demonstrate the structural features of congenital heart disease. Occasionally, the exact characteristics of complex cardiac malformations are difficult to identify on conventional computed tomography, magnetic resonance imaging, and echocardiography, and the use of 3D printed models can help overcome their limitations. Recently, 3D printed models have been used for congenital heart disease education, preoperative simulation, and decision-making processes. In addition, we will pave the way for the development of this technology in the future and discuss various aspects of its use, such as the development of surgical techniques and training of cardiac surgeons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9431804PMC
http://dx.doi.org/10.3348/jksr.2020.81.2.310DOI Listing

Publication Analysis

Top Keywords

printed models
16
congenital heart
16
heart disease
12
three-dimensional printed
8
models congenital
8
heart
5
[application three-dimensional
4
printed
4
models
4
congenital
4

Similar Publications

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

Low-cost male urogenital simulator for penile implant surgery training: a 3D printing approach.

3D Print Med

January 2025

Department of Surgical & Interventional Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Background: Penile implant surgery is the standard surgical treatment for end-stage erectile dysfunction. However, the growing complexity of modern high-tech penile prostheses has increased the demand for more practical training opportunities. The most advanced contemporary training methods involve simulation training using cadavers, with costs exceeding $5,000 per cadaver, inclusive of biohazard fees.

View Article and Find Full Text PDF

Blood-contacting medical devices, especially extracorporeal membrane oxygenators (ECMOs), are highly susceptible to surface-induced coagulation because of their extensive surface area. This can compromise device functionality and lead to life-threatening complications. High doses of anticoagulants, combined with anti-thrombogenic surface coatings, are typically employed to mitigate this risk, but such treatment can lead to hemorrhagic complications.

View Article and Find Full Text PDF

The purpose of this study was to investigate the application of an innovative extrusion-based 3D food printing (3DFOODP) technique in developing rice protein-starch (RP-S) gel-based products. The effects of 3DFOODP conditions were examined, which included variations in the concentrations of rice protein (RP) and corn starch (S) (15, 17.5, and 20 wt.

View Article and Find Full Text PDF

Introduction: While cadaveric dissections remain the cornerstone of education in skull base surgery, they are associated with high costs, difficulty acquiring specimens, and a lack of pathology in anatomical samples. This study evaluated the impact of a hand-crafted three-dimensional (3D)-printed head model and virtual reality (VR) in enhancing skull base surgery training.

Research Question: How effective are 3D-printed models and VR in enhancing training in skull base surgery?

Materials And Methods: A two-day skull base training course was conducted with 12 neurosurgical trainees and 11 faculty members.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!