Prostate cancer (PCa) is one of the most fatal diseases in male patients with high bone metastatic potential. Bone metastasis severely shortens overall survival and brings skeletal-related events (SREs) which reduces the life quality of patients, and this situation is currently regarded as irreversible and incurable. The progression and metastasis of PCa are found to be closely associated with inflammatory cytokines and chemokines. As pivotal members of inflammatory cytokines, Interleukin-1 (IL-1) family plays a crucial role in this process. Elevated expression of IL-1 family was detected in PCa patients with bone metastasis, and accumulating evidences proved that IL-1 family could exert vital effects on the progression and bone metastasis of many cancers, while some members have dual effects. In this review, we discuss the role of IL-1 family in the bone metastasis of PCa. Furthermore, we demonstrate that many members of IL-1 family could act as pivotal biomarkers to predict the clinical stage and prognosis of PCa patients. More importantly, we have elucidated the role of IL-1 family in the bone metastasis of PCa, which could provide potential targets for the treatment of PCa bone metastasis and probable directions for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552844PMC
http://dx.doi.org/10.3389/fonc.2022.951167DOI Listing

Publication Analysis

Top Keywords

bone metastasis
28
il-1 family
24
family bone
12
metastasis pca
12
bone
8
metastasis
8
prostate cancer
8
inflammatory cytokines
8
pca patients
8
role il-1
8

Similar Publications

A new effLuc/Kate dual reporter allele for tumour imaging in mice.

Dis Model Mech

January 2025

Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria.

Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo.

View Article and Find Full Text PDF

Background: Accurate data on the prognosis of bone metastases are necessary for appropriate treatment. Immune checkpoint inhibitors (ICIs) are widely used in the treatment of gene mutation-negative non-small cell lung cancer (GMN-NSCLC).

Aim: To investigate the prognostic factors in patients with bone metastases from GMN-NSCLC following ICI use.

View Article and Find Full Text PDF

Background: Rhabdomyosarcoma (RMS), a rare pediatric soft tissue neoplasm, predominantly develops in late childhood and adolescence with no discernible gender bias. Alveolar rhabdomyosarcoma (ARMS) stems from mesenchymal cells and may develop most frequently in the trunk, extremities, and head/neck areas, while occurrences in the pelvic cavity are less frequent. The manifestation is typically characterized by a high rate of aggressive metastasis and a poor overall survival prognosis.

View Article and Find Full Text PDF

Objectives: F-FDG PET/CT has been used to characterize the primary lesion and staging in head and neck cancers (HNC). However, prior studies for detecting distant metastasis and synchronous tumors are sparse, especially in Indian context. To investigate the frequency and distribution of head and neck carcinomas, distant metastases and synchronous malignancies detected in HNC in a north Indian population.

View Article and Find Full Text PDF

The resection of bone tumors results in large bone defects with some residual tumor cells, and the treatment of this type of bone defect area often faces a dilemma, namely, the trade-off between bone repair and antitumor after the resection of bone tumors. In order to promote local bone repair, and at the same time inhibit tumor recurrence by continuous and controlled drug administration, we developed a multifunctional NIR-responsive scaffold, whose main components are polylactic acid and MXene, and loaded with PLGA/DOX microspheres, and we hope that the scaffold can take into account both antitumor and bone repair in the bidirectional modulation effect of NIR. The results showed that the scaffold with 1% MXene content had relatively good performance in photothermal therapy (PT) and other aspects, and it could be smoothly increased to 50 °C within 2 min under NIR illumination, and the drug release of microspheres was increased by 10% after illumination compared with that at body temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!