Background: We sought to screen and verify the long non-coding ribonucleic acids (lncRNAs) related to immune infiltration in metastatic osteosarcoma (OS).

Methods: We downloaded the RNA-sequencing expression data from The Cancer Genome Atlas (TCGA) database as the training data set. We downloaded the GSE39055 data set from the National Center for Biotechnology Information, Gene Expression Omnibus as the validation data set. The least absolute shrinkage and selection operator (LASSO) regression algorithm was used to screen the optimized lncRNA combinations. Kaplan-Meier curves were used to evaluate the associations between the lncRNAs and actual prognosis. The independent survival prognosis clinical factors were obtained by univariate and multivariate Cox analyses. A nomogram was established to explore the correlation between survival rate and risk information. The Tumor IMmune Estimation Resource was applied to estimate the composition of 6 subtypes of immune infiltration cells.

Results: In total, 1,398 lncRNAs and 14,631 messenger RNAs were screened from TCGA data set, and divided into the low and high immunity groups. The Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data (ESTIMATE) scores differed significantly between the samples in the two groups. Additionally, 5 optimized lncRNA combinations were obtained using the LASSO algorithm. Risk factors including age, metastatic tumor, and risk-score (RS) were related to the prognosis of OS patients. The survival rates predicted by the nomogram model were consistent with the actual survival rates of OS patients. Finally, we found that RS was negatively correlated with the proportion of immune cells.

Conclusions: In total, 5 feature lncRNAs were identified as novel biomarkers for OS. Next, a RS nomogram model was constructed based on the 5 identified lncRNAs. This model predicted the survival rates and prognoses of OS patients well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552095PMC
http://dx.doi.org/10.21037/tcr-22-1926DOI Listing

Publication Analysis

Top Keywords

data set
16
immune infiltration
12
survival rates
12
expression data
8
optimized lncrna
8
lncrna combinations
8
nomogram model
8
immune
6
data
6
lncrnas
5

Similar Publications

Optimizing Correction Factors on Color Differences for Automotive Painting Services.

Sensors (Basel)

December 2024

Department of Management and Industrial Engineering, University of Petrosani, 332003 Petrosani, Romania.

Currently, the automotive sector is showing increased demands regarding the color of cars in general, but especially the quality and the time of painting, in particular. Companies working in this industry, especially in specialized painting services, must perform work of impeccable quality in the shortest possible time in order to be efficient. Color differences that appear in different areas of the car result from the use of different formulas for obtaining color.

View Article and Find Full Text PDF

Given the significant impact of delayed graft function (DGF) on transplant outcomes, the aim of this study was to develop and validate machine learning (ML) models capable of predicting the risk of DGF in deceased-donor kidney transplantation (DDKT). This retrospective cohort study was conducted using clinical and histopathological data collected between 2018 and 2022 at Ramathibodi Hospital from DDKT donors, recipients, and post-implantation time-zero kidney biopsy samples to develop predictive models. The performance of three ML models (neural network, random forest, and extreme gradient boosting [XGBoost]) and traditional logistic regression on an independent test data set was evaluated using the area under the receiver operating characteristic curve (AUROC) and Brier score calibration.

View Article and Find Full Text PDF

Optimization procedures provide ligament parameters by minimizing the difference between experimental measurements and computational simulations. Literature values are used as initial guesses of ligament parameters for these optimization procedures. However, it remains unknown how these values affect the estimation of ligament parameters.

View Article and Find Full Text PDF

Comparative Analysis of Single-Channel and Multi-Channel Classification of Sleep Stages Across Four Different Data Sets.

Brain Sci

November 2024

Department of Neurology, Beth Isreal Deaconess Medical Center, Harvard Medical School, Harvard University, Cambridge, MA 02215, USA.

: Manually labeling sleep stages is time-consuming and labor-intensive, making automatic sleep staging methods crucial for practical sleep monitoring. While both single- and multi-channel data are commonly used in automatic sleep staging, limited research has adequately investigated the differences in their effectiveness. In this study, four public data sets-Sleep-SC, APPLES, SHHS1, and MrOS1-are utilized, and an advanced hybrid attention neural network composed of a multi-branch convolutional neural network and the multi-head attention mechanism is employed for automatic sleep staging.

View Article and Find Full Text PDF

The Socioeconomic Impact of Transport Costs for Adult Patients Requiring Haemodialysis: A Mixed Methods Study.

Healthcare (Basel)

December 2024

Academic-Practice-Partnership of Bern University of Applied Sciences and Insel Gruppe, Bern University Hospital, 3008 Bern, Switzerland.

Background/objectives: Patients requiring haemodialysis often perceive the cost of their travels to the dialysis centres as a significant burden. The study aimed to collect a first Swiss national data set on transport costs and assess their impact on patients and their relatives.

Methods: In addition to interviews with patients, a quantitative survey was developed and distributed online using a voluntary sampling strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!