Introduction: Adipose-derived stem cells (ADSCs) have been subject of several studies due to their abundance, ease of preparation, and application in bone regeneration. We aim to compare effectiveness of alveolar reconstruction utilizing human cancellous freeze-dried graft (HCG) and beta tricalcium phosphate (BTP), both seeded with human ADSC (hADSC) and autologous bone graft (ABG).
Material And Methods: A 5 × 5 mm alveolar defect in 36 male Wistar rats were treated using: ABG (C), HCG-hADSC (H1), and BTP-hADSC (H2). At 1 and 8 weeks after surgery, runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osterix (OSX), and bone morphogenetic protein 2 (BMP2; g/mL) were quantified using immunohistochemistry, while bone tissue volume (BV, mm), bone tissue volume fraction (BF, percentage), and trabecular thickness of bone (TT, mm) were assessed using micro-computed tomography (CT).
Results: One week after surgery, H2 was higher in RUNX2, OSX, ALP, and BMP2 than C ( < .05). Only RUNX2 and OSX were found to be higher in H1 than C, while ALP and BMP2 were higher in H2 than H1. Micro-CT revealed that H2 had a higher TT than C and C had a higher TT than H1 ( < .05). Eight weeks after surgery, both H2 and H1 was higher in RUNX2, OSX, ALP, and BMP2 than C ( < .05). RUNX2 and BMP2 were found to be higher in H1 than H2. Micro-CT revealed that H2 had higher BV and TT than C and H1 ( < .05).
Conclusions: Exogenous hADSC strengthened the effectiveness of HCG and BTP to accelerate osteogenesis, osteoconduction, and osteoinduction. The latter was the most successful in bone formation, followed by HCG and ABG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/10556656221132372 | DOI Listing |
Mater Today Bio
February 2025
Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
Spinal fusion surgery remains a significant challenge due to limitations in current bone graft materials, particularly in terms of bioactivity, integration, and safety. This study presents an innovative approach using an injectable hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) hydrogel combined with stromal vascular fraction (SVF) and low-dose recombinant human BMP-2 (rhBMP-2) to enhance osteodifferentiation and angiogenesis. Through a series of in vitro studies and preclinical models involving rats and minipigs, we demonstrated that the hydrogel system enables the sustained release of rhBMP-2, resulting in significantly improved bone density and integration, alongside reduced inflammatory responses.
View Article and Find Full Text PDFArtificial bone, primarily composed of calcium carbonate, demonstrates a higher resorption rate than calcium phosphate-based counterparts, suggesting potential for early bone replacement. Animal experiments using porous calcium carbonate ceramics have demonstrated bone formation superior to commercially available artificial bone after short-term implantation. Long-term implantation has yielded suboptimal results owing to resorption of both newly formed bone and implantation material.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
Robocasting calcium phosphate compounds as a novel approach to creating customized structures with interconnected pores not only overcomes the limitations of traditional fabrication methods of calcium phosphate substitutes but also boosts the potential for bone tissue regeneration. The ink development is a key step in 3D printing. In this study, different inks consisting of magnesium- and sodium-doped carbonated hydroxyapatite, β-tricalcium phosphate, and Pluronic F-127 were prepared to design biomimetic bone scaffolds.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Basic Sciences, Araçatuba Dental School, São Paulo State University - UNESP, Araçatuba, 16066-840, Brazil.
Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil.
Background: The use of ex vivo assays associated with biomaterials may allow the short-term visualization of a specific cell type response inserted in a local microenvironment. Blood is the first component to come into contact with biomaterials, providing blood clot formation, being substantial in new tissue formation. Thus, this research investigated the physiological blood clot (PhC) patterns formed in 3D scaffolds (SCAs), based on chitosan and 20% beta-tricalcium phosphate and its effect on osteogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!