The atmospheric concentration of methane has more than doubled since the start of the Industrial Revolution. Methane is the second-most-abundant greenhouse gas created by human activities and a major driver of climate change. This APS-Optica report provides a technical assessment of the current state of monitoring U.S. methane emissions from oil and gas operations, which accounts for roughly 30% of U.S. anthropogenic methane emissions. The report identifies current technological and policy gaps and makes recommendations for the federal government in three key areas: methane emissions detection, reliable and systematized data and models to support mitigation measures, and effective regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.464421 | DOI Listing |
Wetlands (Wilmington)
January 2025
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada.
There are increasing global efforts and initiatives aiming to tackle climate change and mitigate its impacts via natural climate solutions (NCS). Wetlands have been considered effective NCS given their capacity to sequester and retain atmospheric carbon dioxide (CO) while also providing a myriad of other ecosystem functions that can assist in mitigating the impacts of climate change. However, wetlands have a dual impact on climate, influencing the atmospheric concentrations of both CO and methane (CH).
View Article and Find Full Text PDFTransl Anim Sci
January 2025
Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada.
A study was conducted to assess growth performance, methane (CH) emissions, and feeding behavior of feedlot steers consuming backgrounding and finishing diets with an essential oil blend (EO), monensin (Mon), and their combination (EO + Mon). The study was structured as a 2 × 2 factorial, with two feed additive treatments (Control, EO) and two monensin treatments (no Monensin, Monensin). One hundred Angus × steers were evenly distributed across each treatment into four pens, and each dietary phase consisted of four, 28-d periods.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China.
Hydrodynamic conditions influenced by river sinuosity may alter carbon (e.g., carbon dioxide and methane) emissions and microbial communities responsible for nutrient turnover.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:
As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
January 2025
Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.
The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!