Optical phased array can be widely used in many fields benefiting from its superior performance. We designed and fabricated chirped grating antennas and uniform grating antennas for the optical phased array. The effective aperture of the chirped grating antennas is about twice that of the uniform grating antennas. The chirped grating optical phased array can receive the reflected signal of the object at a distance of 100 m, while the uniform grating optical phased array can only receive 50 m under the same conditions. Additionally, a ranging distance of 25 m is achieved when two chirped grating optical phased arrays are set as the transmitter and receiver.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.464358DOI Listing

Publication Analysis

Top Keywords

chirped grating
20
grating antennas
20
optical phased
20
phased array
16
uniform grating
12
grating optical
12
aperture chirped
8
grating
8
antennas optical
8
antennas uniform
8

Similar Publications

Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed.

View Article and Find Full Text PDF
Article Synopsis
  • This study introduces a deep-learning denoising method that transforms fiber-optic sensor spectra into 2D images and uses a Cycle-GAN model to improve signal quality.
  • It demonstrates significant improvements in signal-to-noise ratio (SNR), root mean square error (RMSE), and high correlation with original signals compared to traditional denoising methods like wavelet transform and empirical mode decomposition.
  • The proposed algorithm successfully reduces noise across different fiber-optic sensors and shows excellent linearity in temperature response, making fiber-optic sensing more effective for various research and industrial applications.
View Article and Find Full Text PDF

We report the development of a robust Yb-doped fiber laser system based on chirped-pulse amplification (CPA), generating 44-fs laser pulses with up to 70-µJ pulse energy at a 1-MHz repetition rate. It consists of a Yb-doped nonlinear polarization evolution (NPE) mode-locked fiber oscillator, a chirped fiber Bragg grating (CFBG) stretcher, a wave-shaper for manipulating the spectrum of the signal, cascaded fiber amplifiers, and two compression units. The output pulse duration of 44 fs for efficient high harmonic generation (HHG) was achieved by a multi-pass multi-plate Herriott-type non-linear compression unit.

View Article and Find Full Text PDF

In this study, we demonstrated a few-cycle pulse generation system delivering an 8-fs and 13-nJ pulse. The oscillator of this system is a mode-locked fiber laser based on a nonlinear amplifying loop mirror (NALM), which is injected into the gain management nonlinear (GMN) amplifier after pre-chirp management by a chirped fiber Bragg grating (CFBG) and a passive fiber. Subsequently, a hollow-core photonic bandgap (HC-PBG) fiber is employed to compensate for the dispersion, achieving a pulse duration of 49.

View Article and Find Full Text PDF
Article Synopsis
  • - A new, all-fiber method for measuring dispersion in chirped fiber Bragg gratings (CFBGs) has been proposed, showcasing its high-speed and high-resolution capabilities.
  • - Experimental results for 1-4 order dispersion in CFBGs align closely with theoretical predictions, demonstrating the method's accuracy and repeatability.
  • - This innovative approach surpasses existing techniques in measurement speed and precision, and is expected to significantly enhance applications in fiber chirped pulse amplifiers and ultrafast lasers.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!