Lateral shear interferometer, being a self-referenced interferometer, has proven to be an important tool in scalar optics. Here we employ a vectorial counterpart - polarization lateral shear interferometer, in which the two interfering beams apart from being derived from the test wavefront, are in orthogonal states of polarization. Therefore when the test wavefront has spatially varying phase gradient across the beam cross-section, the resulting shearogram produces polarization fringes instead of intensity fringes. Further, the shearogram becomes inhomogeneously polarized. This polarization lateral shear interferometer may have potential uses in metrology, but in this article we demonstrate the ability of the interferometer in the generation of all Stokes singularities in the single beam by launching a phase singular beam into it. It is found that a vortex dipole is formed along with other generic Stokes singularities. Experimental observations support the results and they are discussed in the article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.456282 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!