A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Millimeter-wave joint radar and communication system based on photonic frequency-multiplying constant envelope LFM-OFDM. | LitMetric

The joint radar and communication (JRC) system providing both large-capacity transmission and high-resolution ranging will play a pivotal role in the next-generation wireless networks (e.g., 6G and beyond) and defense applications. Here, we propose and experimentally demonstrate a novel photonics-assisted millimeter-wave (mm-wave) JRC system with a multi-Gbit/s data rate for communication function and centimeter-level range resolution for radar function. The key is the design of the intermediate-frequency (IF) JRC signal through the angle modulation of the linear frequency modulation (LFM) radar carrier using orthogonal frequency division multiplexing (OFDM) communication signal, inspired by the idea of constant-envelope OFDM (CE-OFDM). This IF angle-modulated waveform facilitates the broadband photonic frequency (phase)-multiplying scheme to generate mm-wave JRC signal with multiplied instantaneous bandwidth and phase modulation index for high-resolution LFM radar and noise-robust CE-OFDM communication. It is with fixed low power-to-average power ratio to render robustness against the nonlinear distortions. In proof-of-concept experiments, a 60-GHz JRC signal with an instantaneous bandwidth over 10-GHz is synthesized through a CE-LFM-OFDM signal encoded with a 2-GBaud 16-QAM OFDM signal. Consequently, a 1.5-cm range resolution of two-dimension imaging and an 8-Gbit/s data rate are achieved for both radar and communication functions, respectively. Furthermore, the proposed JRC system is able to achieve higher radar range resolution and better anti-noise communication, when using higher-order photonic frequency multiplying.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.461508DOI Listing

Publication Analysis

Top Keywords

radar communication
12
jrc system
12
range resolution
12
jrc signal
12
joint radar
8
mm-wave jrc
8
data rate
8
lfm radar
8
photonic frequency
8
instantaneous bandwidth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!