Optical needle has become a hot research topic in recent years, due to the excellent properties and potential applications. To achieve a sub-diffraction optical needle, there are three common methods including planar diffractive lenses, reflective mirrors or axicons, and high-NA objective lenses with the designed phase or amplitude elements. Here, we propose a new kind of designed phase and amplitude element called the sinusoidal-amplitude binary phase mask (SA-BPM), which modulates the amplitude and phase distributions of the incident vector optical fields (VOFs) simultaneously. Based on Richards-Wolf vector diffraction integral, the corresponding parameters of SA-BPM and the optimal optical needle length are calculated by exhaustive method and genetic algorithm. We further upgrade the SA-BPM by adding a Gaussian function in the amplitude modulation, and design the Gaussian SA-BPM (GSA-BPM). We find that the ultra-long optical needles are achieved with the SA-BPM and GSA-BPM, and the depth of focus of the optical needles are improved by 30%-70% compared with the case of binary phase mask. Such SA-BPM and GSA-BPM we proposed have great potential for manipulation and utilization of the ultra-long optical needles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.463393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!