Second-order semi-aplanatism provides better imaging quality along a line of the object plane close to a point than conventional aplanatic optics, which is of interest in applications with high aspect ratio sensors. Designing an optic with second-order semi-aplanatism requires the use of freeform surfaces, and can be done as a limit case of the SMS 3D design method applied to stigmatically image 3 collinear object points. The algorithm for this specific design problem is described and a lens example with 3 freeform surfaces is designed and analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.458626DOI Listing

Publication Analysis

Top Keywords

limit case
8
case sms
8
sms design
8
design method
8
second-order semi-aplanatism
8
freeform surfaces
8
second-order semi-aplanatic
4
semi-aplanatic freeform
4
freeform optics
4
optics limit
4

Similar Publications

This study investigates the implementation of collaborative route planning between trucks and drones within rural logistics to improve distribution efficiency and service quality. The paper commences with an analysis of the unique characteristics and challenges inherent in rural logistics, emphasizing the limitations of traditional methods while highlighting the advantages of integrating truck and drone technologies. It proceeds to review the current state of development for these two technologies and presents case studies that illustrate their application in rural logistics.

View Article and Find Full Text PDF

Treatment wetlands have emerged as a potential remediation option for oil-sands process affected waters (OSPW) which contains a suite of organic and inorganic constituents of potential concern. The aim of this study was to evaluate the fate of metals in a treatment wetland exposed to OSPW. Data was collected over three operational seasons testing freshwater and OSPW inputs at the Kearl Treatment Wetland in northern Alberta.

View Article and Find Full Text PDF

Reconfiguration of brain network dynamics in bipolar disorder: a hidden Markov model approach.

Transl Psychiatry

December 2024

School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.

Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes.

View Article and Find Full Text PDF

The computational study of ligand binding to a target protein provides mechanistic insight into the molecular determinants of this process and can improve the success rate of drug design. All-atom molecular dynamics (MD) simulations can be used to evaluate the binding free energy, typically by thermodynamic integration, and to probe binding mechanisms, including the description of protein conformational dynamics. The advantages of MD come at a high computational cost, which limits its use.

View Article and Find Full Text PDF

Real-Time Tractography-Assisted Neuronavigation for Transcranial Magnetic Stimulation.

Hum Brain Mapp

January 2025

Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.

State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!