Robotic Non-Destructive Testing.

Sensors (Basel)

Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.

Published: October 2022

Non-destructive testing (NDT) and evaluation (NDE) are commonly referred to as the vast group of analysis techniques used in civil, medical, and industrial sectors to evaluate the properties of materials, tissues, components, or structures without causing any damage [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570721PMC
http://dx.doi.org/10.3390/s22197654DOI Listing

Publication Analysis

Top Keywords

non-destructive testing
8
robotic non-destructive
4
testing non-destructive
4
testing ndt
4
ndt evaluation
4
evaluation nde
4
nde commonly
4
commonly referred
4
referred vast
4
vast group
4

Similar Publications

A Refractive Index-Based Dual-Band Metamaterial Sensor Design and Analysis for Biomedical Sensing Applications.

Sensors (Basel)

January 2025

Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.

We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.

View Article and Find Full Text PDF

Three-Dimensional Reconstruction of Road Structural Defects Using GPR Investigation and Back-Projection Algorithm.

Sensors (Basel)

December 2024

Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China.

Ground-Penetrating Radar (GPR) has demonstrated significant advantages in the non-destructive detection of road structural defects due to its speed, safety, and efficiency. This paper proposes a three-dimensional (3D) reconstruction method for GPR images, integrating the back-projection (BP) imaging algorithm to accurately determine the size, location, and other parameters of road structural defects. Initially, GPR detection images were preprocessed, including direct wave removal and wavelet denoising, followed by the application of the BP algorithm to effectively restore the defect's location and size.

View Article and Find Full Text PDF

Deep learning-based morphometric analysis of zebrafish is widely utilized for non-destructively identifying abnormalities and diagnosing diseases. However, obtaining discriminative and continuous organ category decision boundaries poses a significant challenge by directly observing zebrafish larvae from the outside. To address this issue, this study simplifies the organ areas to polygons and focuses solely on the endpoint positioning.

View Article and Find Full Text PDF

Civil infrastructure assets' contribution to countries' economic growth is significantly increasing due to the rapid population growth and demands for public services. These civil infrastructures, including roads, bridges, railways, tunnels, dams, residential complexes, and commercial buildings, experience significant deterioration from the surrounding harsh environment. Traditional methods of visual inspection and non-destructive tests are generally undertaken to monitor and evaluate the structural health of the infrastructure.

View Article and Find Full Text PDF

Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!