Ground-object classification using remote-sensing images of high resolution is widely used in land planning, ecological monitoring, and resource protection. Traditional image segmentation technology has poor effect on complex scenes in high-resolution remote-sensing images. In the field of deep learning, some deep neural networks are being applied to high-resolution remote-sensing image segmentation. The DeeplabV3+ network is a deep neural network based on encoder-decoder architecture, which is commonly used to segment images with high precision. However, the segmentation accuracy of high-resolution remote-sensing images is poor, the number of network parameters is large, and the cost of training network is high. Therefore, this paper improves the DeeplabV3+ network. Firstly, MobileNetV2 network was used as the backbone feature-extraction network, and an attention-mechanism module was added after the feature-extraction module and the ASPP module to introduce focal loss balance. Our design has the following advantages: it enhances the ability of network to extract image features; it reduces network training costs; and it achieves better semantic segmentation accuracy. Experiments on high-resolution remote-sensing image datasets show that the mIou of the proposed method on WHDLD datasets is 64.76%, 4.24% higher than traditional DeeplabV3+ network mIou, and the mIou on CCF BDCI datasets is 64.58%. This is 5.35% higher than traditional DeeplabV3+ network mIou and outperforms traditional DeeplabV3+, U-NET, PSP-NET and MACU-net networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571339PMC
http://dx.doi.org/10.3390/s22197477DOI Listing

Publication Analysis

Top Keywords

remote-sensing images
16
high-resolution remote-sensing
16
deeplabv3+ network
16
traditional deeplabv3+
12
network
11
high resolution
8
images high
8
image segmentation
8
deep neural
8
remote-sensing image
8

Similar Publications

Assessment of the effect of management activities like a drought salinity barrier and herbicide treatments on the spread of submersed and floating aquatic estuary macrophytes.

Sci Total Environ

January 2025

Center for Spatial Technologies and Remote Sensing (CSTARS), Institute of the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA. Electronic address:

Estuaries are complex ecosystems, being difficult to determine the way management actions affect them. This study quantitatively evaluated the spread of invasive submerged and floating aquatic macrophyte vegetation in Franks Tract of the Sacramento-San Joaquin Delta in response to two types of management actions, drought salinity barriers in years 2015, 2021 and 2022, and herbicide treatments in years 2004-2022. A Random Forest algorithm applied to airborne hyperspectral and satellite multispectral images generated maps of macrophyte cover in 2004-2022.

View Article and Find Full Text PDF

In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.

View Article and Find Full Text PDF

Semantic segmentation of high-resolution images from remote sensing is crucial across various sectors. However, due to limitations in computational resources and the complexity of network architectures, many sophisticated semantic segmentation models struggle with efficiency in real-world applications, leading to an interest in developing lightweight model like borders. These models often employ a dual-branch structure, which balances processing speed and performance effectively.

View Article and Find Full Text PDF

Revealing the status of forests is important for sustainable forest management. The basis of the concept lies in meeting the needs of future generations and today's generations in the management of forests. The use of remote-sensing (RS) technologies and geographic information systems (GIS) techniques in revealing the current forest structure and in long-term planning of forest areas with multipurpose planning techniques is increasing day by day.

View Article and Find Full Text PDF

Purpose: This study aims to develop a deep learning methodology for quantitative assessing adenoid hypertrophy in nasopharyngoscopy images and to investigate its correlation with the apnea-hypopnea index (AHI) in pediatric patients with obstructive sleep apnea (OSA).

Patients And Methods: A total of 1642 nasopharyngoscopy images were collected from pediatric patients aged 3 to 12 years. After excluding images with obscured secretions, incomplete adenoid exposure, 1500 images were retained for analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!