Assessment and therapy for individuals who have hand paresis requires force sensing approaches that can measure a wide range of finger forces in multiple dimensions. Here we present a novel strain-gauge force sensor with 3 degrees of freedom (DOF) designed for use in a hand assessment and rehabilitation device. The sensor features a fiberglass printed circuit board substrate to which eight strain gauges are bonded. All circuity for the sensor is routed directly through the board, which is secured to a larger rehabilitative device via an aluminum frame. After design, the sensing package was characterized for weight, capacity, and resolution requirements. Furthermore, a test sensor was calibrated in a three-axis configuration and validated in the larger spherical workspace to understand how accurate and precise the sensor is, while the sensor has slight shortcomings with validation error, it does satisfy the precision, calibration accuracy, and fine sensing requirements in orthogonal loading, and all structural specifications are met. The sensor is therefore a great candidate for sensing technology in rehabilitation devices that assess dexterity in patients with impaired hand function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571685PMC
http://dx.doi.org/10.3390/s22197441DOI Listing

Publication Analysis

Top Keywords

sensor
8
novel planar
4
planar strain
4
strain sensor
4
sensor design
4
design capturing
4
capturing 3-dimensional
4
3-dimensional fingertip
4
fingertip forces
4
forces patients
4

Similar Publications

Flexible microcolumn array-based silk fibroin for sweat glucose monitoring.

Anal Chim Acta

May 2025

College of Textile Science and Engineering, Jiangnan University, 1800Lihu Road, Wuxi, 214122, China. Electronic address:

Flexible sweat sensors possess the special potential for continuous non-invasive monitoring of human blood glucose. We put forward a flexible microcolumn array sensor, which is designed for health monitoring by means of detecting glucose levels in sweat and capturing physiological signals related to human movement. With the combination of silk fibroin (SF), waterborne polyurethane (PU), and multi-walled carbon nanotubes (MWCNT), this microcolumn film electrode is able to effectively function as a strain sensor benefiting from the superior mechanical performance of PU.

View Article and Find Full Text PDF

Identifying promising peptide targets for leprosy serological tests: From prediction to ELISA.

J Genet Eng Biotechnol

March 2025

Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Leprosy remains a significant health concern, particularly in India, Brazil, and Indonesia. Early diagnosis is essential to prevent complications, highlighting the need for improved diagnostic tools. This study aimed to identify novel Mycobacterium leprae antigens and assess their effectiveness against human sera through immunotools for antibody response evaluation.

View Article and Find Full Text PDF

We examined whether the glucose levels and awareness of individuals without diabetes changed after using a sensor-based intermittently scanned continuous glucose monitoring (isCGM) system in their daily lives. Japanese individuals without a diabetes diagnosis wore the isCGM system while maintaining a normal lifestyle during the baseline period. A certified diabetes educator coached them on how to improve their lifestyle based on information from sensor data, food journals, and body composition.

View Article and Find Full Text PDF

Exposure to surgical smoke can cause discomfort owing to its odor. Although electric scalpels with smoke evacuation systems are recommended to reduce exposure to surgical smoke, few reports have focused on its effectiveness in odor reduction. This study aimed to evaluate the deodorizing effects of an electric scalpel with a smoke evacuation system during breast surgery.

View Article and Find Full Text PDF

Conjugated polymers (CPs) are considered one of the most important gas-sensing materials due to their unique features, combining the benefits of both metals and semiconductors, along with their outstanding mechanical properties and excellent processability. However, CPs with conventional morphological structures, such as largely amorphous and bulky matrices, face limitations in practical applications because of their inferior charge transport characteristics, low surface area, and insufficient sensitivity. Therefore, the design and development of novel morphological nanostructures in CPs have attracted significant attention as a promising strategy for improving morphological and electrical characteristics, thereby enabling a considerable increase in the sensing performance of corresponding gas sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!