As the demand for service robots increases, a mobile manipulator robot which can perform various tasks in a dynamic environment attracts great attention. There are some controllers that control mobile platform and manipulator arm simultaneously for efficient performance, but most of them are difficult to apply universally since they are based on only one mobile manipulator model. This lack of versatility can be a big problem because most mobile manipulator robots are made by connecting a mobile platform and manipulator from different companies. To overcome this problem, this paper proposes a simultaneous controller which can be applied not only to one model but also to various types of mobile manipulator robots. The proposed controller has three main characteristics, which are as follows: (1) establishing a pose that motion planning can be carried out in any position, avoiding obstacles and stopping in a stable manner at the target coordinates, (2) preventing the robot from collision with surrounding obstacles while driving, (3) defining a safety area where the manipulator does not hit the obstacles while driving and executing the manipulation accordingly. Our controller is fully compatible with Robot Operating System (ROS) and has been used successfully with three different types of mobile manipulator robots. In addition, we conduct motion planning experiments on five targets, each in two simulation worlds, and two motion planning scenarios using real robots in real-world environments. The result shows a significant improvement in time compared to existing control methods in various types of mobile manipulator and demonstrates that the controller works successfully in the real environment. The proposed controller is available on GitHub.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572373 | PMC |
http://dx.doi.org/10.3390/s22197369 | DOI Listing |
Sensors (Basel)
January 2025
Department of Automation, "Dunarea de Jos" University of Galati, 800008 Galati, Romania.
This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Istanbul Ticaret University, 34854 Maltepe, Turkey.
An automated micro-tweezers system with a flexible workspace would benefit the intelligent sorting of live cells. Such micro-tweezers could employ a forced vortex strong enough to capture a single cell. Furthermore, addressable control of the position to the vortex would constitute a robotic system.
View Article and Find Full Text PDFFront Robot AI
January 2025
CREATE Lab, Institute of Mechanical Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Laboratory automation requires reliable and precise handling of microplates, but existing robotic systems often struggle to achieve this, particularly when navigating around the dynamic and variable nature of laboratory environments. This work introduces a novel method integrating simultaneous localization and mapping (SLAM), computer vision, and tactile feedback for the precise and autonomous placement of microplates. Implemented on a bi-manual mobile robot, the method achieves fine-positioning accuracies of 1.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physiology & Biophysics, UC Irvine, Irvine, California; Department of Biomedical Engineering, UC Irvine, Irvine, California; Center for Complex Biological Systems, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California. Electronic address:
The mechanically-activated ion channel PIEZO1 is critical to numerous physiological processes, and is activated by diverse mechanical cues. The channel is gated by membrane tension and has been found to be mobile in the plasma membrane. We employed single particle tracking (SPT) of endogenous, tdTomato-tagged PIEZO1 using Total Internal Reflection Fluorescence Microscopy in live cells.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates.
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!