A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research on Emotion Recognition Method Based on Adaptive Window and Fine-Grained Features in MOOC Learning. | LitMetric

Research on Emotion Recognition Method Based on Adaptive Window and Fine-Grained Features in MOOC Learning.

Sensors (Basel)

School of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China.

Published: September 2022

In MOOC learning, learners' emotions have an important impact on the learning effect. In order to solve the problem that learners' emotions are not obvious in the learning process, we propose a method to identify learner emotion by combining eye movement features and scene features. This method uses an adaptive window to partition samples and enhances sample features through fine-grained feature extraction. Using an adaptive window to partition samples can make the eye movement information in the sample more abundant, and fine-grained feature extraction from an adaptive window can increase discrimination between samples. After adopting the method proposed in this paper, the four-category emotion recognition accuracy of the single modality of eye movement reached 65.1% in MOOC learning scenarios. Both the adaptive window partition method and the fine-grained feature extraction method based on eye movement signals proposed in this paper can be applied to other modalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573542PMC
http://dx.doi.org/10.3390/s22197321DOI Listing

Publication Analysis

Top Keywords

adaptive window
20
eye movement
16
mooc learning
12
window partition
12
fine-grained feature
12
feature extraction
12
emotion recognition
8
method based
8
learners' emotions
8
partition samples
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!