A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Digital Twin-Driven Rear Axle Assembly Torque Prediction and Online Control. | LitMetric

Digital Twin-Driven Rear Axle Assembly Torque Prediction and Online Control.

Sensors (Basel)

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.

Published: September 2022

During the assembly process of the rear axle, the assembly quality and assembly efficiency decrease due to the accumulation errors of rear axle assembly torque. To deal with the problem, we proposed a rear axle assembly torque online control method based on digital twin. First, the gray wolf-based optimization variational modal decomposition and long short-term memory network (GWO-VMD-LSTM) algorithm was raised to predict the assembly torque of the rear axle, which solves the shortcomings of unpredictable non-stationarity and nonlinear assembly torque, and the prediction accuracy reaches 99.49% according to the experimental results. Next, the evaluation indexes of support vector machine (SVM), recurrent neural network (RNN), LSTM, and SVM, RNN, and LSTM based on gray wolf optimized variational modal decomposition (GWO-VMD) were compared, and the performance of the GWO-VMD-LSTM is the best. For the purpose of solving the insufficient information interaction capability problem of the assembly line, we developed a digital twin system for the rear axle assembly line to realize the visualization and monitoring of the assembly process. Finally, the assembly torque prediction model is coupled with the digital twin system to realize real-time prediction and online control of assembly torque, and the experimental testing manifests that the response time of the system is about 1 s. Consequently, the digital twin-based rear axle assembly torque prediction and online control method can significantly improve the assembly quality and assembly efficiency, which is of great significance to promote the construction of intelligent production line.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573100PMC
http://dx.doi.org/10.3390/s22197282DOI Listing

Publication Analysis

Top Keywords

assembly torque
32
rear axle
28
axle assembly
24
assembly
16
torque prediction
16
online control
16
prediction online
12
digital twin
12
torque
8
control assembly
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!