Ultrasonic Monitoring of the Water Content in Concentrated Water-Petroleum Emulsions Using the Slope of the Phase Spectrum.

Sensors (Basel)

Engineering Faculty, Universidad Autónoma de Occidente, Cll 85 # 115-85, Cali 760030, Colombia.

Published: September 2022

This work proposes the slope of the phase spectrum as a signal processing parameter for the ultrasonic monitoring of the water content of water-in-crude oil emulsions. Experimental measurements, with water volume fractions from 0 to 0.48 and test temperatures of 20 °C, 25 °C, and 30 °C, were carried out using ultrasonic measurement devices operating in transmission-reception and backscattering modes. The results show the phase slope depends on the water volume fraction and, to a lesser extent, on the size of the emulsion droplets, leading to a stable behavior over time. Conversely, the behavior of the phase slope as a function of the volume fraction is monotonic with low dispersion. Fitting a power function to the experimental data provides calibration curves that can be used to determine the water content with percentage relative error up to 70% for a water volume fraction of 0.06, but less than 10% for water volume fractions greater than 0.06. Furthermore, the methodology works over a wide range of volume fractions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572599PMC
http://dx.doi.org/10.3390/s22197236DOI Listing

Publication Analysis

Top Keywords

water volume
16
water content
12
volume fractions
12
volume fraction
12
ultrasonic monitoring
8
monitoring water
8
slope phase
8
phase spectrum
8
°c °c
8
phase slope
8

Similar Publications

Since late 2021, outbreaks of highly pathogenic avian influenza virus have caused a record number of mortalities in wild birds, domestic poultry, and mammals in North America. Wetlands are plausible environmental reservoirs of avian influenza virus; however, the transmission and persistence of the virus in the aquatic environment are poorly understood. To explore environmental contamination with the avian influenza virus, a large-volume concentration method for detecting infectious avian influenza virus in waterbodies was developed.

View Article and Find Full Text PDF

Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. This study investigates solubilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration.

View Article and Find Full Text PDF

NIPAm Microgels Synthesised in Water: Tailored Control of Particles' Size and Thermoresponsive Properties.

Polymers (Basel)

December 2024

School of Physical & Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK.

Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of -isopropylacrylamide-based microgels covalently crosslinked with varying contents of ,-methylenebisacrylamide.

View Article and Find Full Text PDF

This study investigates the effect of microstructural changes in polyurethane coatings on their water resistance properties. Polyurethane coatings with varying diluent contents were prepared and tested for water penetration resistance and mechanical property retention. The time-dependent behavior of water within the coatings at different immersion durations was analyzed using low-field nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Investigating the Impact of Polymers on Clay Flocculation and Residual Oil Behaviour Using a 2.5D Model.

Polymers (Basel)

December 2024

Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China.

In the process of oilfield development, the surfactant-polymer (SP) composite system has shown significant effects in enhancing oil recovery (EOR) due to its excellent interfacial activity and viscoelastic properties. However, with the continuous increase in the volume of composite flooding injection, a decline in injection-production capacity (I/P capacity) has been observed. Through the observation of frozen core slices, it was found that during the secondary composite flooding (SCF) process, a large amount of residual oil in the form of intergranular adsorption remained in the core pores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!