Thermal inkjet printing can generate more than 300,000 droplets of picoliter scale within one second stably, and the image analysis workflow is used to quantify the positive and negative values of the droplets. In this paper, the SimpleBlobDetector detection algorithm is used to identify and localize droplets with a volume of 24 pL in bright field images and suppress bright spots and scratches when performing droplet location identification. The polynomial surface fitting of the pixel grayscale value of the fluorescence channel image can effectively compensate and correct the image vignetting caused by the optical path, and the compensated fluorescence image can accurately classify positive and negative droplets by the k-means clustering algorithm. 20 µL of the sample solution in the result reading chip can produce more than 100,000 effective droplets. The effective droplet identification correct rate of 20 images of random statistical samples can reach more than 99% and the classification accuracy of positive and negative droplets can reach more than 98% on average. This paper overcomes the problem of effectively classifying positive and negative droplets caused by the poor image quality of photographed picolitre ddPCR droplets caused by optical hardware limitations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573249PMC
http://dx.doi.org/10.3390/s22197222DOI Listing

Publication Analysis

Top Keywords

positive negative
16
negative droplets
12
droplets
8
caused optical
8
droplets caused
8
image
6
image segmentation
4
segmentation quantification
4
quantification droplet
4
droplet dpcr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!