Starting from Quartz-Enhanced Photo-Acoustic Spectroscopy (QEPAS), we have explored the potential of a tightly linked method of gas/vapor sensing, from now on referred to as Tuning-Fork-Enhanced Photo-Acoustic Spectroscopy (TFEPAS). TFEPAS utilizes a non-piezoelectric metal or dielectric tuning fork to transduce the photoacoustic excitation and an optical interferometric readout to measure the amplitude of the tuning fork vibration. In particular, we have devised a solution based on Additive Manufacturing (AM) for the Absorption Detection Module (ADM). The novelty of our solution is that the ADM is entirely built monolithically by Micro-Metal Laser Sintering (MMLS) or other AM techniques to achieve easier and more cost-effective customization, extreme miniaturization of internal volumes, automatic alignment of the tuning fork with the acoustic micro-resonators, and operation at high temperature. This paper reports on preliminary experimental results achieved with ammonia at parts-per-million concentration in nitrogen to demonstrate the feasibility of the proposed solution. Prospectively, the proposed TFEPAS solution appears particularly suited for hyphenation to micro-Gas Chromatography and for the analysis of complex solid and liquid traces samples, including compounds with low volatility such as illicit drugs, explosives, and persistent chemical warfare agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573196PMC
http://dx.doi.org/10.3390/s22197193DOI Listing

Publication Analysis

Top Keywords

tuning fork
16
photo-acoustic spectroscopy
12
detection module
8
additively manufactured
4
manufactured detection
4
module integrated
4
tuning
4
integrated tuning
4
fork
4
fork enhanced
4

Similar Publications

The misuse of personalized listening devices (PLDs) resulting in noise-induced hearing loss (NIHL) has become a public health concern, especially among youths, including medical students. The occupational use of PLDs that produce high-intensity sounds amplifies the danger of cochlear deterioration and high-frequency NIHL especially when used in noisy environments. This study aims to evaluate the incidence and trends of NIHL among medical students using PLDs.

View Article and Find Full Text PDF

Development of a novel latent deoxyribonucleic acid detection technique for crime scene investigation using quartz tuning fork-based biosensor technology.

Forensic Sci Int

December 2024

Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia. Electronic address:

The forensic Deoxyribonucleic Acid (DNA) fingerprinting is a tool for investigating crime scenes by identifying/tracing criminals and linking crime scenes. However, in cases where experts are unable to detect and identify any biological traces or human-derived cells at the crime scene or while testing the samples in the laboratories, all the advantages offered by forensic laboratories lose their significance. It becomes a waste of time, effort, and resources allocated to these laboratories.

View Article and Find Full Text PDF

Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.

View Article and Find Full Text PDF

Improved T-shaped quartz tuning fork with isosceles-trapezoidal grooves optimized for quartz-enhanced photoacoustic spectroscopy.

Photoacoustics

February 2025

Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

The quartz tuning fork (QTF) being the acoustic-electrical conversion element for quartz-enhanced photoacoustic spectroscopy (QEPAS) system directly affects the detection sensitivity. However, the low electromechanical conversion efficiency characteristic of standard QTF limits the further enhancement of the system. Therefore, the optimized design for QTF is becoming an important approach to improve the performance of QEPAS.

View Article and Find Full Text PDF

Open-closed single-tube on-beam tuning-fork-enhanced fiber-optic photoacoustic spectroscopy.

Photoacoustics

October 2024

Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-system, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

A proof-of-concept on-beam tuning-fork-enhanced photoacoustic sensor based on an open-closed single-tube acoustic-microresonator (AmR) was proposed and investigated for the first time, to the best of our knowledge. Due to the high acoustic amplification effect, the open-closed AmR improved the detection sensitivity by 54 times with respect to the bare tuning fork (TF). Compared to traditional dual-tube/single-tube on-beam spectrophone configuration, the developed approach significantly facilitates the laser beam alignment and reduces the sensor size and gas consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!