The general fabrication process for stabilized amorphous selenium (a-Se) detectors is vacuum deposition. The evaporant alloy is typically selenium alloyed with 0.3-0.5%As to stabilize it against crystallization. During the evaporation, fractionation leads to the formation of a deposited film that is rich in As near the surface and rich in Se near the substrate. The As content is invariably not uniform across the film thickness. This paper examines the effect of non-uniform As content on the charge collection efficiency (CE). The model for the actual CE calculation is based on the generalized CE equation under small signals; it involves the integration of the reciprocal range-field product (the schubweg) and the photogeneration profile. The data for the model input were extracted from the literature on the dependence of charge carrier drift mobilities and lifetimes on the As content in a-SeAs alloys to generate the spatial variation of hole and electron ranges across the photoconductor film. This range variation is then used to calculate the actual CE in the integral equation as a function of the applied field. The carrier ranges corresponding to the average composition in the film are also used in the standard CE equation under uniform ranges to examine whether one can simply use the average As content to calculate the CE. The standard equation is also used with ranges from the spatial average and average inverse. Errors are then compared and quantified from the use of various averages. The particular choice for averaging depends on the polarity of the radiation-receiving electrode and the spatial variation of the carrier ranges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571485 | PMC |
http://dx.doi.org/10.3390/s22197128 | DOI Listing |
Anal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.
View Article and Find Full Text PDFFood Res Int
February 2025
Ghent University, Department of Applied Physics, Research Unit Plasma Technology (RUPT), Belgium.
Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.
View Article and Find Full Text PDFSe Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFSci Rep
January 2025
Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan.
Alkali antimonide semiconductor photocathodes are promising candidates for high-brightness electron sources for advanced accelerators, including free-electron lasers (FEL), due to their high quantum efficiency (QE), low emittance, and high temporal resolution. Two challenges with these photocathodes are (1) the lack of a universal deposition recipe to achieve crystal stoichiometries and (2) their high susceptibility to vacuum contamination, which restricts their operation pressure to ultrahigh vacuums and leads to a short lifetime and low extraction charge. To resolve these issues, it is essential to understand the elemental compositions of deposited photocathodes and correlate them to robustness.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic.
Blue phosphorene, a two-dimensional, hexagonal-structured, semiconducting phosphorus, has gained attention as it is considered easier to synthesize on metal surfaces than its allotrope, black phosphorene. Recent studies report different structures of phosphorene, for example, on Cu(111), but the underlying mechanisms of their formation are not known. Here, using a combination of in situ ultrahigh vacuum low-energy electron microscopy and in vacuo scanning tunneling microscopy, we determine the time evolution of the surface structure and morphology during the deposition of phosphorus on single-crystalline Cu(111).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!