Millimeter-Wave Multi-Channel Backscatter Communication and Ranging with an FMCW Radar.

Sensors (Basel)

Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.

Published: September 2022

A multi-channel backscatter communication and radar sensing system is proposed and demonstrated in this paper. Frequency modulated continuous wave (FMCW) radar ranging is integrated with simultaneous uplink data transmission from a self-packaged active radio frequency (RF) tag. A novel package solution is proposed for the RF tag. With the proposed package, the RF tag can transmit a 32-QAM signal up to 2.5 Gbps and QPSK signal up to 8 Gbps. For a multi-tag scenario, we proposed using spread spectrum code to separate the data from each tag. In this case, tags can be placed at arbitrary locations without adjacent channel interference. Proof-of-concept simulations and measurements are demonstrated. A 625 Mbps data rate is achieved in a dual-tag scenario for two tags.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570682PMC
http://dx.doi.org/10.3390/s22197104DOI Listing

Publication Analysis

Top Keywords

multi-channel backscatter
8
backscatter communication
8
fmcw radar
8
signal gbps
8
millimeter-wave multi-channel
4
communication ranging
4
ranging fmcw
4
radar multi-channel
4
communication radar
4
radar sensing
4

Similar Publications

High-capacity optical interconnects with short reach are hugely demanded driven by the exponential growth of data traffic. In this work, four-channel wavelength division multiplexing (WDM) uplink/downlink twin single-sideband (twin-SSB) signals are implemented by a wavelength selective switch (WSS) at once, which simplifies the structure of multi-channel SSB transmitters and reduces the cost of high-capacity optical interconnect. Compared to a double sideband scheme, it has been experimentally proven that the performance of SSB transmission over standard single-mode fiber (SSMF) at C-band with an ultra-high baud rate has been greatly improved, which has the ability to effectively overcome the power fading induced by chromatic dispersion in an intensity modulation and direct detection (IM/DD) system.

View Article and Find Full Text PDF

Review of Photodetectors for Space Lidars.

Sensors (Basel)

October 2024

Planetary Geology, Geophysics and Geochemistry Laboratory, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.

Photodetectors play a critical role in space lidars designed for scientific investigations from orbit around planetary bodies. The detectors must be highly sensitive due to the long range of measurements and tight constraints on the size, weight, and power of the instrument. The detectors must also be space radiation tolerant over multi-year mission lifetimes with no significant performance degradation.

View Article and Find Full Text PDF

Miniaturization of wireless neural-recording systems enables minimally-invasive surgery and alleviates the rejection reactions for implanted brain-computer interface (BCI) applications. Simultaneous massive-channel recording capability is essential to investigate the behaviors and inter-connections in billions of neurons. In recent years, battery-free techniques based on wireless power transfer (WPT) and backscatter communication have reduced the sizes of neural-recording implants by battery eliminating and antenna sharing.

View Article and Find Full Text PDF

An E-band multi-channel Doppler backscattering system on EAST.

Rev Sci Instrum

December 2023

School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.

An E-band (60-90 GHz) multi-channel Doppler backscattering (DBS) system with X-mode polarization has been installed on the Experimental Advanced Superconducting Tokamak (EAST), which can measure the turbulence at five different radial locations simultaneously. This system can launch 31 fixed microwave frequencies in the range of 60-90 GHz with a 1 GHz interval into the plasma, and five probing signals are selected by employing a reference signal and multiple filters. During experiments, the frequency of the reference signal is tunable in the E-band, and the selected probing signals can be changed as needed without any other adjustments, which can be performed in one shot or between shots.

View Article and Find Full Text PDF

W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak.

Rev Sci Instrum

August 2023

Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau, France.

This article presents the design, implementation, and first data of a uniquely flexible, multi-channel, frequency comb Doppler backscattering diagnostic recently made operational in the ASDEX-Upgrade tokamak [A. Gruber and O. Gruber, Fusion Sci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!