Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The current work investigates the effect of the addition of graphene nanoplatelets (GNPs) and graphene oxide (GO) to high hard-segment polyurethane (75% HS) on its thermal, morphological, and mechanical properties. Polyurethane (PU) and its nanocomposites were prepared with different ratios of GNP and GO (0.25, 0.5, and 0.75 wt.%). A thermal stability analysis demonstrated an enhancement in the thermal stability of PU with GNP and GO incorporated compared to pure PU. Differential Scanning Calorimetry (DSC) showed that both GNP and GO act as heterogeneous nucleation agents within a PU matrix, leading to an increase in the crystallinity of PU. The uniform dispersion and distribution of GNP and GO flakes in the PU matrix were confirmed by SEM and TEM. In terms of the mechanical properties of the PU nanocomposites, it was found that the interaction between PU and GO was better than that of GNP due to the functional groups on the GO's surface. This leads to a significant increase in tensile strength for 0.5 wt.% GNP and GO compared with pure PU. This can be attributed to interfacial interaction between the GO and PU chains, resulting in an improvement in stress transferring from the matrix to the filler and vice versa. This work sheds light on the understanding of the interactions between graphene-based fillers and their influence on the mechanical properties of PU nanocomposites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572798 | PMC |
http://dx.doi.org/10.3390/polym14194224 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!