The strengthening of timber beams with carbon-fibre-reinforced polymers (CFRP) has been widely used in the last decades to enhance the behaviour of historical or new timber structures, usually for bending. While considerable improvement in capacity and ductility is typically achieved, the increase in stiffness was, in many cases, well short of analytical expectations, which tend to overestimate stiffness. This study addresses the problem by investigating the underlying mechanical behaviour using experimental, analytical, and numerical tools on a sample of Norway spruce () beams reinforced with carbon-fibre fabric. In the experimental program, each beam is tested for bending with and without CFRP reinforcement in order to determine specimen-specific stiffness increase on an individual basis. The reinforcement yielded an increase of 27% in capacity, 53% in ultimate displacement, and 133% in compliance, verifying its efficiency. Axial compression tests on an independent sample are also performed to verify modulus of elasticity in compression. Numerical computations based on a beam model and a three-dimensional finite element model are performed with the introduction of separate moduli of elasticity for tension and compression in timber. Inverse computation using the experimental load-deflection curves yielded the moduli and the compression yield stress of timber to provide the best match between tests and simulations. The mean difference of only 6% in stiffness between FEM and the tests is obtained. The dominance of normal stresses in the longitudinal direction is found, in correspondence with the experimentally observed tensile failure of timber (apart from a few defected specimens). Compression yield stresses are within 7% (beam model) and 2% (FEM) error compared with the control axial tests. The differences between FE simulations and tests in ultimate load and compliance are within 1%. This study concludes that the application of CFRP in the composite beams enables the determination of timber material properties opposed to pure timber beams without reinforcement, and the adoption of separate moduli of elasticity for tension and compression leads to adequate modelling of reinforced timber beams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573027PMC
http://dx.doi.org/10.3390/polym14194222DOI Listing

Publication Analysis

Top Keywords

timber beams
16
timber
9
experimental analytical
8
analytical numerical
8
beam model
8
separate moduli
8
moduli elasticity
8
elasticity tension
8
tension compression
8
compression yield
8

Similar Publications

Unlabelled: Accurate prediction of moisture distributions in wood is among the most critical challenges in timber engineering. Achieving this requires a well-coordinated comparison of experimental methods and simulation tools. While significant progress has been made in developing simulation tools in recent years, a lack of experience with and trust in these tools continues to hinder broader implementation, especially when it comes to free water and its absorption.

View Article and Find Full Text PDF

Analyzing the Vibration Response of Adhesively Bonded Composite Cantilevers.

Materials (Basel)

December 2024

Division of Structural Mechanics and Material Mechanics, Faculty of Civil Engineering, Cracow University of Technology, 31-155 Kraków, Poland.

In this study, we investigated the vibration of adhesively bonded composite cantilevers consisting of two beech wood lamella and a bondline of flexible polyurethane. The beams had a constant total height, while the thickness of the adhesive layer varied. We analyzed both the driven and free vibration of a single cantilever beam and a cantilever with an additional mass attached to its end.

View Article and Find Full Text PDF

Improvement of Bending Stiffness of Timber Beams with Ultra-High-Modulus-Carbon-Fibre-Reinforced Polymer Sheets.

Materials (Basel)

December 2024

Department of Theory of Structures and Building Information Modeling (BIM), Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland.

The bending stiffness of beams represents a pivotal parameter influencing both the dimensions of the elements during their design and their subsequent utilisation. It is evident that excessive deflections can cause discomfort to users and contribute to further structural degradation. The objective of this study was to enhance the bending stiffness of timber beams by bonding a composite sheet to their external surfaces.

View Article and Find Full Text PDF

Shape Optimization and Experimental Investigation of Glue-Laminated Timber Beams.

Materials (Basel)

December 2024

Division of Structural Mechanics and Material Mechanics, Faculty of Civil Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.

This study investigated the optimal shape of glue-laminated timber beams using an analytical model of a slender beam, taking into account the anisotropy of its strength properties as well as boundary conditions at the oblique bottom face of the beam. A control theory problem was formulated in order to optimize the shape of the modeled beam. Two optimization tasks were considered: minimizing material usage (Vmin) for a fixed load-carrying capacity (LCC) of the beam and maximizing load-bearing capacity (Qmax) for a given volume of the beam.

View Article and Find Full Text PDF

The article provides information about strengthening cold-formed thin-walled steel beams made of the sigma profile. An innovative concept for sectional transverse strengthening of thin-walled beams subjected to concentrated forces was investigated. The proposed solution's novelty lies in attaching the sectional transverse strengthening to the beam's cross-section, employing a point crimping technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!